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Solution to the Gripper Envelope Problem Using a Planar Sweep

HENRY L. WELCH

Abstract -- The determination of sweep shadows is important when analyzing the potential
interference effects of obstacles in a robotic environment and is well suited for application to the
gripper envelope problem. This report presents techniques for generating the planar sweep shadow
of polyhedral objects. Algorithmic details for computing the sweep shadow for both straight-line
and simple-rotation trajectories are described. Methods for analyzing the resultant sweep shadow
are also presented and the time complexity of the algorithms is discussed. Various test cases are
provided in an appendix showing the actual results generated by software solving the problem.
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1.0 Introduction

The order in which an assembly is performed can drastically affect the overall time it takes to
perform that assembly. A good ordering can reduce the number of assembly errors and
manufacturing difficulties. For example, some alternate assembly sequences may require less
fixturing or fewer changes of tools and grippers than others. It may be possible, by assembling
different parts at different times, to develop sequences which have mating trajectories with fewer
and more distant obstacles to avoid. Such a choice could thereby result in simpler and more reliable
assembly operations.

One the goals of this report to answer some of the questions posed by the calculation of geometric
feasibility. Geometric feasibility determines whether or not two subassemblies can be properly
mated along a collision free trajectory. Related to this calculation is the determination of the gripper
envelope, or the volume available for the gripper, during an assembly operation. The goal of these
types of calculations is to determine the potential interference effects of obstacles in the
environment.

The appendices serve as an aid for bridging the gap between the algorithmic details presented and
the software package which implements these ideas.

2.0 Background

A significant body of research has been compiled in recent years which addresses the question of
assembly sequence planning. In most cases the basic approach is to use the geometric relationships
between parts and the idea of geometric feasibility to generate a list of all the possible feasible
assembly sequences. Differences between the various approaches involve the method by which
assembly sequences are represented and the degree and type of operator interaction required by the
algorithm.

Two of the earliest attempts, by Ko and Lee [Ko] and Fox and Kempf [Fox], use a precedence
graph to represent the relationship between the various assembly tasks and require the operator to
supply all the geometric feasibility information. Further work by De Fazio and Whitney [De Fazio
87, De Fazio 88] uses directed graphs of assembly states and provides a consistent set of operator
questions for determining geometric feasibility. Later, Homem de Mello and Sanderson [Homem

86, Homem 88] propose the use of AND/OR graphs of subassemblies to represent the assembly
sequences and provide an algorithm for analyzing geometric feasibility.

A common element missing from all these approaches is the ability to rank the various assembly
sequences so as to be able to determine the sequence most likely to be successful. Among the
factors which may be used to rank sequences and specific operations in the sequence are the size
aria snape of the gripper envelope and the subassembly stability (in the presence of friction and
gravity).

Figure 1 shows a proposed blueprint for the architecture of an assembly sequence planner. Many
of the modules depicted exist, in one form or another, as research efforts throughout the literature
[Welch]. The notable exception is the module for performing gripper envelope analysis. In this
paper the issues related to determining the bounds on the gripper envelope are addressed.

2.1 The Gripper Envelope

Humans and robots are both similar in that each need an envelope or volume in which to perform
actions. In most cases the volume required for an action is centered about the object being acted
upon and changes as the operator moves the object past obstacles in the environment. There are
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two techniques which can be used to deal with the problem. The In'st requires full geometric data
on the robot or agent performing the assembly. An algorithm for detecting collisions, for example,
is one proposed by Mirolo and Pagello [Mirolo]. The second technique performs the motion
without the presence of the agent and generates the volume not occupied by obstacles for later
analysis. This second technique is the one being considered here because it provides a non-robot-

specific solution.

Initially the calculation of the gripper envelope closely resembles the volume sweeping problem, as
described by Wang and Wang [Wang], in which the obstacles in the environment sweep out
volumes which cannot be occupied by either the part being mated or the mechanism moving the
part. However, by limiting the types of motions that an object may follow, the problem can be

simplified.

2.2 The Plane Sweep Algorithm

As is commonly the case in both robotics and other fields a problem is first partially solved by
making restrictions to the shapes of geometric entities. In the field of robotics this usually involves
restrictions to the types of paths possible in mating trajectories and to the shapes of objects being
represented. Another common assumption in robotics is that the geometric relationship between
that object and the hand/fingers of the agent remains fixed from the time an object is grasped until
the time it is released. This eliminates many types of uncertainty that are difficult to model.

The most common limitation on the shapes of geometric entities is to limit objects to the set of

convex polyhedrons as demonstrated by Mirolo and Pagello [Mirolo]. A less restrictive class of
objects would be those possessing planar faces. This is a common technique in surface modeling
and yields accurate approximations of most objects [see Blinn, Foley, and Turner]. This is the
class of objects used throughout the rest of this paper.

From basic mechanics, it is known that all forms of motion can be broken up into two distinct

components. The fast component is tangential to the direction of motion and the second component
is normal to it. Generalizing the concept to volume sweeping divides the volume being swept into a
cross-sectional area perpendicular to the direction of sweeping and a distance along the direction of
sweeping.

The cross-sectional area of the gripper with respect to the mating trajectory is constant due to the
fixed relationship between the object and the robot agent's hand and the limitation of the mating
trajectories to paths with uniform tangential components,. Examples of trajectory paths which fit
this criterion are straight line segments, simple rotations, helical paths, and constant radius curves.
Thus, by looking at the projected sweep shadow cast by obstacles in the direction of the path
tangent, an estimate of the cross-section available for a robot's hand can be made.

3.0 Generation of Sweep Shadows

These shadows can be generated by sweeping a plane along the direction of the motion and
marking the cross-sectional area of the obstacles encountered by the plane. Hence, the name "The
Plane Sweep Algorithm." The next few sections describe the details for computing the projected
shadows in the sweep plane.

3.1 Straight Line Trajectories

The generation of sweep shadows for straight line segments is straightforward. As described

previously, the plane sweep algorithm generates these shadows by sweeping a plane along the
direction of motion and determines which of the objects in the environment intersect with the plane

and they do so. This problem is similar to projection in a cartesian coordinate system as shown in



Figure 2.a. In order to generate the prop.er shadow, three main functions need to be performed.
These are the projection of data, the clipping of unwanted data from the projection, and the closure
of faces and objects brought about by the clipping process. These functions are described below.
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Figure 2. (a) Sweeping a plane along a straight line segment. Sweeping the XY-plane along the
Z-axis can be accomplished by projecting the cube onto the XY-plane.
(b) Sweeping plane through a simple rotation. Rotating the XZ-plane about the Z-axis
can be accomplished by projecting the cube along the ¢ direction.

3.1.1 Projection in Cartesian Coordinates

Projection in a cartesian coordinate system is the simplest form of data projection,
especially if it is along one of the primary axes of that coordinate system. This is done by simply
eliminating the coordinate of the axis that is in the direction of the projection. For simplicity,
define the x-axis of the projection coordinate system as the direction of the motion and the origin of
the projection coordinate system as the starting point of the motion. By defining other suitable
axes for the y and z directions of the projection coordinate system the object data, as represented by
P, can be converted to the projection coordinate system by using a coordinate transformation, T, as

shown below [Selby, p. 369].

-1

[P - Pr] = [a b c][T] --->[a b c] = [P - Pr] [T]

3.1.2 Clipping Edges of Objects

Once the object data is converted to the new coordinate system it can be projected to the
sweep plane by eliminating the x coordinate. This is not sufficient, though, to generate the correct
sweep shadow since the sweep plane only traverses a finite segment of the x-axis. The removal of
unwanted data is called clipping. The most common form of clipping performed in programming
today is with respect to screen or window boundaries in computer graphics [Heam, pp. 128-134].
The general approach is to clip the edges of an object with respect to one boundary at a time. In the
case of the motion described above, the clipping planes are at x = 0 and x = length (of the motion).
This can be done by pammeterizing each edge and removing the unwanted portions.



3.1.3 Closing Object Faces

There is a side effect to the clipping operation. This is caused by the portions of objects
that are removed at the boundaries of the clipping region. Unless extra edges are added to the

clipped object then the clipped object is left open at the boundary of the clipping region. This is
corrected by the process of closure. The simplest way to close the face of an object is to traverse
its edges in an orderly fashion. When an edge leaves the clipping region (i.e. outside of the area to
be swept) this location is recorded. When the next edge is found which reenters the clipping
region then a new edge is added which connects the point where the face left the clipping region
and where it reenters. This automatically closes each face and object [Hearn].

3.2 Simple Rotations

The goal of the rotational sweep shadow problem is to compute the areas in the radius-height plane
which are swept by a full plane sweeping through an angle in the specified rotational reference
frame given the arbitrary rotational reference frame, the angle to rotate through, and the
environment of obstacles. More specifically, given an arbitrary axis of rotation, center of the
rotation space, a reference point defining the starting location of the sweep plane, and an angle to
rotate the plane through, sweep the plane through the rotation and record all the areas on the plane
that are swept out by obstacles in the environment.

The rotation of a full plane is necessary since it is unknown which half of the sweep space is
important relative to the reference point. For example, consider a hand drill with a T shaped
handle. While it is sufficient to represent its orientation by specifying the location of one side of
the handle, both sides of the handle may encounter obstacles when it rotates.

Upon further consideration, this problem reduces to the projection of data (through the angular
coordinate) in an arbitrary cylindrical coordinate system, as shown in Figure 2.b, with the added
consideration of clipping at the initial and final location of the sweep plane. There are also some
other complications brought about since the plane being swept is a full plane and not the half-plane
usually associated with a cylindrical coordinate system. The two most obvious complications are
the inclusion of data points containing both positive and negative radii (something not allowed in a
strict cylindrical coordinate system) and, when the rotational angle is greater than n, points on an
obstacle may appear in both the positive and negative sides of the sweep plane. These are some of
the features which make this problem interesting.

3.2.1 The Basic Solution

Having defined the rotational sweep shadow problem, it is now possible to explore solutions to the
problem. Since the sweeping operation reduces to projection through the angle of rotation in a
cylindrical coordinate system, it is advantageous to use cylindrical coordinates in the solution of the
problem. Since clipping and closure are also considerations, algorithms to accomplish these
operations are needed. Figure 3 shows a simplified description of the algorithm to be used.

The next few sections describe in detail the various calculations necessary to implement the
algorithm.

3.2.1.1 Defining the Cylindrical Coordinate System

The initial step in solving the rotational sweep shadow problem is to develop a representational
formalism that simply and compactly defines the relevant data. Figure 4 shows how an arbitrary
point in the environment can be represented in terms of a cylindrical coordinate system defined by
the rotation.

7



procedure GENERATE_ROTATIONAL_SWEEP_SHADOW;

specify and define the cylindrical coordinate system for the sweep;

for each object in the environment;

for each face on the object;

for each edge on the face;

convert the edge to the sweep c.tx_dinate system;

sweep the edge and clip as necessary;

close with the previous edge ff necessary;

close the face between the initial and final vertices;

end-procedure;

Figure 3. A simplified algorithm for solving the rotational sweep shadow problem.

0

P h - (P- Pr)" n

h

r = V/(IP - Prl 3h) 2

P 1"
r

Figure 4. An arbitrary cylindrical coordinate system defined by a spatial rotation.

One problem with the formalism of Figure 4 is that it does not specify the angular component of
the point P. To do this, a cartesian coordinate system must be built around the cylindrical system
so that a reference direction for the angular component can be defined. The first obvious choice of
axis is to use the axis of rotation as the new cartesian z-axis. Specifying the new cartesian x- and y-
axes requires more thought. Since a reference point representing the starting location of the rotation
plane has already been specified it would be advantageous to use this to define the new cartesian x-
axis. In general the direction from the center of the rotation to the reference point is not orthogonal
to the already chosen z-axis. The solution to this is to use the Gram-Schmidt orthonormalization
technique to specify the x-axis orthogonal to the existing z-axis [Hoffman, p. 280]. The y-axis
then follows naturally in the right hand sense as the vector cross product between the z-axis and the
x-axis.

3.2.1.2 Converting Data to the Sweep Reference System

Now that the sweep reference system is defined it is necessary to convert all the environment data
to that coordinate system. Letting T represent a coordinate transformation matrix from the global
coordinate system to the sweep reference system using the x-, y-, and z-axes defined in the



previoussection.A matrix notation can be used to convert the coordinate P, as clef'met in Figure 4,
to the r, O, and h of the sweep reference system by first finding the scalar components, [a b c], of
the position vector P in the sweep reference system as shown below [Selby, p. 369].

-1

[P - Pr] = [a b c][T] _ [a b c] -- [P- Pr] [T]

r = _a 2 + b 2

0 = tan-1 (b)

h=c

3.2.1.3 Clipping Edges Against the Rotational Sweep Wedge

In a rectangular system the clipping of edges against a fixed planar boundary is straightforward and

yields relatively few difficulties [Hearn, pp. 128-134]. Extending the idea of clipping to two
parallel planar faces involves clipping against each of the planar faces individually. It would appear
that the same basic idea can be used to clip an edge against the two constant 0-planes which bound

the rotational sweep wedge; however, this is not entirely true.

If the calculation of the rotational sweep shadow involved only the rotation of a half-plane then
clipping against the two constant 0 sides of the wedge would sufficiently clip the end or ends of
each edge. However, a consideration of both positive and negative wedges reveals that edges
swept by the negative radius half of the sweep plane must be clipped to the opposite sides of the
constant Owedge boundaries. This requires clipping of each edge against four boundaries to solve
the problem. It is also possible to clip each edge against the two positive radius wedge boundaries
by rotating the edge data through _ radians and then reclipping against the same two boundaries.
This second technique is the one that is used here and is essentially the same as performing the
clipping operations for two half plane rotational sweeps.

Another approach to the clipping problem involves clipping against both constant 0 wedge
boundaries simultaneously. This is not as straightforward as the rectangular case because of the
wrap-around nature of angular data. (Angles greater than twice lr are not possible.) In the
rectangular case, an indication would be given as to whether an edge's endpoints are beyond one
of the two boundaries and which of the two boundaries it is beyond. In the case of cylindrical data,

it is not readily apparent whether the endpoint is beyond the 0 = 0 or 0 = 0max wedge boundary.
This effect can be counteracted by also considering the midpoint of each edge. Figure 5 shows all
the possible arrangements of endpoints and midpoints for the case when the first endpoint as
represented by pl has a 0 value greater than the second endpoint which is represented by p3
Solution of the problem when the role of the endpoints is reversed follows by symmetry.

If either of these techniques is used, a method is still needed to calculate the intersection point with
the wedge boundary. By parameterizing the edge with endpoints Pl and P2 the following vector
formulation is obtained:

[Pl + re(p2 - PD] = [a b c]; 0 _<m <_1

For the case of finding the intersection point with the O = 0 wedge boundary the coordinate b
becomes zero. By introducing the vector d= [0 1 0] and by taking the vector dot product of d with
both sides of the above equation the following condition results [Selby, p. 540]:



pl"d + m(p2"d -pl"d) = 0

Solving for m yields:

pl'd
In =

pl"d - p2.d

(a) Use entire edge

0

0max

Tpl

_p3 bp3
1

(b) Clip p 1 end to 0max

0

_p2 _3

_3

(c) Clip p3 end to 0 = 0

_p3

p2

_p3

p3

(d)

Omax

0

if01 > 02 and 02 > 03 ignore

otherwise clip p I end to 0max

clip p3 end to 0 = 0

Figure 5. The possible clipping arrangements for a straight line edge intersecting a cylindrical
wedge.

Solving for the intersection point with the 0 = Omax wedge boundary is straightforward using the
same basic approach and a simple trick. If the coordinates of the edge are rotated about the z-axis
by negative Omax radians, then the y-coordinate of the intersection point (b above) becomes zero.

10



To do this, the vector d needs to be changed to d= [-sin(Omax) COS(Omax) 0] and the above

calculations repeated [Hearn, pp. 108-109].

Since it is already known that the edge under study intersects the wedge boundary (due to previous
calculations), the above solution holds unless Pl and P2 are identical.

3.2.1.4 Closing Faces Against the Rotational Sweep Wedge

In the previous section, two different methods are presented which demonstrate how an edge can
be clipped against the constant 0 boundaries of the sweep wedge. In the f'u'st method, the edges are
clipped against each planar boundary separately. Closure of each face along the clipping plane is
routine provided that the edges bounding the face are processed in an orderly fashion [Hearn, pp.
134-138].

0 0
max max

0 0

(a) (b)

0 0
max

0

max

(c) (d)

Figure 6. The results of clipping and closing a polygonal face against a cylindrical wedge. The
heaviest lines represent the final shape of the face.

For the second method where clipping against both boundaries is done simultaneously, the results

of clipping and the necessary closure are not as clear cut. Figure 6 shows the four types of closure
possible for the positive radius wedge. In Figure 6a and 6b the method of closure is identical to
that used when clipping a face against a single plane. Figure 6c shows a polygon which is closed
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against both faces and Figure 6d depicts a polygon that leaves from one of the wedge boundaries
and enters via the other. In this case, the resultant closure requires the addition of two edges
instead of the more typical one.

Unlike the normal closure case, the clipping algorithm does not supply all the information
necessary to construct the two new edges of Figure 6d. The data missing is the value of the z or
height, h, of the face where the radius is zero. According to calculus, a plane can be defined by a
normal vector to the plane and a point on the plane by the function:

(p - po)'n = 0

where PO is the given point on the plane and n is the normal to the plane. Knowing that the radius
must be zero, and hence both x and y must be zero, reduces the formula to:

[<0 0 h> - <x0 YO zo>]'[nx ny nz] = 0

and

h = xo nx + YO ny + zo
nz nz

the clipping and closure algorithms guarantee that the face crosses the radius-equals-zero point, the
value of nz must be nonzero.

3.2.2 Discovered Inadequacies of the Current Solution

At first glance it would appear that all the necessary elements are now in place to generate the
complete rotational sweep shadow for a group of objects and an arbitrary rotational reference.
Unfortunately, this is not the case. There are two main problems which need to be addressed. The
f'u'st is caused by values of the rotation angle greater than _ radians. The reason that this is a
problem is that when the sweep plane is rotated greater than rc radians it becomes possible for the
same points on an object to intersect both the positive and negative radius sides of the sweep plane.

The second problem is illustrated in Figure 7. Consider the planar face represented by the plane x =
4 as shown in Figure 7a. If the face is bounded at height of z = _+2 and the algorithms presented
above are used to sweep from 00 to OI the resulting plot in the rh-plane will result as shown in
Figure 7b. The reason that the left side of the figure is left open is due to the manner in which the
wireframe is swept. As the z = 2 edge is swept, the h value of the edge is constant and the r value

starts at some value greater than 4 (= _I(YO*YO + 4*4), decreases to 4 at y = 0 and then increases
again as 0 reaches 01. When one of the edges at the constant 0 boundaries is determined (via
clipping and closure) a constant radius edge is generated in the rh-plane. Similar results occur at the
z = -2 and 00 boundaries respectively. For the case when YO and Yl are the same angular distance

from the x-axis, the open ended wireframe of Figure 7b will be generated. This is called the
minimal radius edge problem and is solved below.

12
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r_o XYo 0

x=4

r r

(a) A planar face at x = 4 Co) The results of clipping and closing
the wireframe of part (a).

Figure 7. An illustration of the minimal radius edge problem.

3.2.2.1 Dealing with Rotational Angles Greater Than

There are two ways of dealing with rotational angles greater than x. If the first clipping algorithm
is used (clipping versus the boundaries separately) then some modifications need to made in the
way that edges are clipped by the planes representing the wedge boundaries. Two potential types
of modifications would work in this case. The f'irst would be to institute a clip against a half-plane
using the origin as the boundary of the half-plane and then clipping against the two half-planes
which represent the wedge boundaries. The second technique would involve clipping against the
two full-planes representing the extended wedge boundaries and performing a union of the
resulting edges. Neither of these options is very desirable, in the first clipping against a half-plane
is not well defined and in the second the union operation can be computationally expensive.

When simultaneous clipping against both the wedge boundaries is used, the options for solving
this problem are not swaightforward. The added difficulty here is that it is now possible for an edge
to have both end-points in the unclipped zone and yet still have a portion of itself in the clipped
zone. When this is the case, two possible configurations are possible. The first is that the edge
should be closed via the radius-equals-zero point; a problem that is already solved. The second
configuration describes the situation when the clipped wedge cuts the object into two sections thus
causing the face under study to become two faces. In this case, each face with this configuration
would have to be clipped and closed twice, once for each side.

If it is only important to know the boundaries of the sweep shadow and extra fines internal to the
shadow itself are not important or are being removed in a later step, then the following technique
can be used for both independent and simultaneous clipping operations. Since it is demonstrated in
previous sections how to clip and close when the rotation angle is less than or equal to z, this

problem can be divided into sweeps with angles less than or equal to z. The most obvious choice
of divisions is for one sweep with an angle of z and the other with a sweep of 0max minus z. This
requires two extra passes of each face (for a total of four) through the clipping and closure
routines, but it will determine the full boundary of the sweep shadow. One important consideration

13



is to keeptrack of whethertheclippededgeshaveapositiveor negativeradiussincethesecond
sweep wedge begins at angle n: and not at angle zero.

3.2.2.2 Solving the Minimal Radius Edge Problem

The problem illustrated in Figure 7 is not as simple to solve as that of rotation angles greater than
n. The problem stems from the fact that the wireframe of an object's faces does not necessarily
define the radial boundaries of those faces. By inspection it can be seen that the maximum radius of

any point on a plane is infinite, therefore, the wireframe boundary of a face on that plane will
define the maximum radii of the points on that face. The wireframe, though, does not always

specify the minimal radii points on that face and this is the situation depicted in Figure 7. Thus, it is
necessary to locate and sweep the minimal radius boundary for each face.

A planar surface represented in cylindrical coordinates is not simply defined. A brief look at the
mathematics, though, reveals that the problem is not difficult to solve. Start with the basic equation
for a plane.

Ax +By +Cz=D

By fixing the value of z and solving for the line on the plane defined by this fixed z yields:

A D - Cz
y = --_ x + -----ff---

Use this to compute the radius squared, and take the partial derivative of this square with respect to
x and set it equal to zero. This describes the point on that line where the radius is minimized.

A DBCZr2=x 2 +y2=x2 +(_-x + )2

v3r2 A 2 A

_---=2x(1 + B-_)-2 B--I;(D-Cz)=O

A

X=(A 2 + B2 ) (D-Cz)

By allowing z to vary, a line representing the minimum radius edge of the plane is defined. This
line can then be treated like any other edge on the face.

There are a few special cases for the proceeding calculations. For the case when C = 0, the values
for x and y are constant throughout the plane. When both A = B = 0 this is the case where z = D
and the plane has a minimal radius of zero which is captured by the closure algorithm and can be
ignored. For the final special case when B - 0, the normal of the plane of the face has no y
component and the value of zero for y can be used.

Now that the minimum radius line for the plane representing the face is defined some further
processing needs to be performed. First, it must be determined whether the line even intersects the
area of the face. This is just the Polygon Intersected Edges problem as defined by Preparata and
Shamos [Prep, p. 313]. If the line does intersect the polygon def'ming the face then extra edges
must be added where appropriate. (This is one edge for a convex polygon and possibly more for a
non-convex polygon.)

14



A solutiontothisproblem istoextend the single-shotpolygon inclusiontestso thatallthedesired

edges arcobtained [Prep,pp. 41-43].The basicideaof the single-shotpolygon inclusiontestisto
determine whether a point islocatedinsidea polygon by drawing a ray from thatpointto intlnity

and counting the number of intersectionswith the edges of the polygon. An odd number of
intersectionsmeans the point is inside and an even number means the point is outside.The
minimum radiuslineisused todefinethe directionof thisray. Rays arcdrawn inboth directions

away from thepoint and by sortingallthe intersectionpoints,a setof minimal radiusedges can be
determined by alternatelylabelingeach intersectionpoint with the rays as insideor outside the

polygon definingthe face.

There arc a few non-trivialproblems associatedwith thisapproach which arc only briefly

mentioned by Preparataand Shamos. These involvedegenerateintersectionsbetween the lineand

theedges of the polygon. The firstariseswhen thelineintersectsthe polygon ata vertex.Not only
does thisintersectionpointintersecttwo edges,itisalsoquitepossiblethatthelineisonly grazing

thepolygon and does not enterorleave itatthatpoint.Whether thistypeof intersectionrepresents
a trucintersectionwith the polygon can be determined by looking at the signof the sineof the

angle between the lineand the edges of the polygon when both of the edges arc directedin the

same directionabout thepolygon. This informationisreadilydetermined by using the vectorcross

product.

The second problcm ariseswhen the lineand an edge overlapeach other.This,though, isjustan
extension of the vertex intersectionproblem. By looking at the edges on both ends of the

overlappingedge itcan bc determined whether thistypeof intersectiondefinesa crossingpointor

not.

3.2.3 The Complete Solution

In Figure 3, a simplified algorithm is provided which attempts to solve the rotational sweep
shadow problem. In previous sections, this algorithm is shown to be mostly correct, but lacks
certain features which leave the problem incompletely solved. Figure 8 depicts an enhanced version
of the algorithm in Figure 3 with added steps for solving the problems associated with large sweep
angles and minimal radius edges.

Even though the solution to this problem requires up to four passes through the clipping and
closure routines for each wedge, the time complexity is still linear with respect to the number of

edges in the obstacles. The only portion of the solution which is not linear is the sorting of
intersection points found in the minimal radius edge solution. In the worst case this sorting can be

done in nlogn time, but it is more likely.that only zero, two, or four points need be sorted for a face
with most faces possessing zero or two intersections for reasonable objects.

3.2.4 Results

A rotational sweep shadow generator using the techniques of simultaneous clipping as described
above has been implemented in C on a Sun-3 workstation. It is incorporated within a robotic
assembly planning system and is used to analyze mating trajectories, grasp sites, and grasp types
for the case of simple rotations. Figure 9 shows the results of this algorithm as it encounters a
cube. In both the cases, the extra internal lines of the shadow are left to aid in visualization and

because their presence does not affect the operation and results of the larger system.

Figure 9a shows the cube when the center of the rotation lies within the cube. The rotation angle is
2 radians and the apparent extra set of lines internal to the right and left sides of the figure result
from the minimal radius edge calculations. Figure 9b shows then same cube when the center of the
rotation lies outside of the cube. The triangular patch to the right shows the extra face caused by

15



procedureGENERATE_COMPLETE_ROTATIONAL_SWEEP_SHADOW;

specifyanddefinethecylindricalctx_dinatesystemfor thesweep;
for eachobjectin theenvironment;

for eachfacein theenvironment;

find theheightof thefaceatr--0;

find theminimalradiusedges;

for eachminimalradiusedge;
if 0max> x then;

sweep in two parts;

else;

sweep in one patti

end-if;

for each edge on the face;

convert the edge to the sweep coordinate system;

if 0max > x then;

for each edge on the face;

sweep for 0 < x and clip as necessary;

close with the previous edge if necessary;

close the face between the initial and final vertices;

reduce 0max by n;

rotate all the data _ radians;

end-if;

for each edge on the face;

sweep the edge and clip as necessary;

close with the previous edge if necessary;

close the face between the initial and final vertices;

end-procedure;

Figure 8. A complete algorithm for solving the rotational sweep shadow problem.

clipping and closure at one of the wedge boundaries. The two vertical lines which are tangent to
two of the curved edges are each minimal radius edges. In the case of the right-most one, its
presence in necessary.

4.0 Analyzing the Sweep Shadow

Since volume sweeping is equivalent to sweeping areas within a plane, it is necessary to determine
how much cross-sectional area remains for the gripper and to employ a metric which characterizes

this area. Because this value depends heavily on the actual location of the grasp sites, the grasp
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sites need to be known at this time. A list of grasp sites and types can be provided or some type of

grasp planner may be used.

\

(a) (b)

Figure 9. The rotational sweep shadow of a cube. (a) With the center of rotation inside the cube.
(b) With the center of rotation outside of the cube.

Once the grasp sites are known, their locations are mapped to the sweep plane. Based on their
type, (e.g., one-fingered) the unswept areas in the p.lane are scanned. Figure 10 shows the area
which must be considered for most of the grasp sites and types, since the obstructions in all

directions around the grasp site may be of importance. In the case where it is known that the
gripper extends in a direction perpendicular to that of the motion (e.g., a two-fingered grasp from
above during a horizontal motion) only half of the unswept plane needs to be considered.

I  '1%i

OBJECT _ _

' _ OBSTAILES

Figure 10. Use of distance to the nearest obstacle as a measure of a gripper's envelope.

Once the appropriate unswept areas in the plane have been determined, it is necessary to analyze
them and to compute the value of a metric on their suitability. A first approach might to find the
largest rectangle which will fit in the unswept area, while still maintaining a reasonable aspect ratio.
Doing this is not completely straight forward because the rectangle needs to be roughly centered
about the grasp site's projection onto the plane. It is also necessary to incorporate a polygon fitting

algorithm to find the valid positions and sizes of the gripper rectangle.

This relatively complex procedure can be replaced by a simpler procedure which effectively
approximates the unswept area. By measuring the euclidean distance from the center of the grasp
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site to the nearest obstruction, an inscribing circular (or semicircular) area is defined within the
unswept volume. By definition, this area is completely free of obstacles and its radius is an
accurate measure of its size. Figure 1 la depicts an example of the calculation of this metric. While
this method does not always rate the unswept area as well as a well-fit rectangle might, as shown
in Figure 1 lb, the inscribed circular area gives a conservative estimate of the cross-sectional area
available for the gripper. This technique is also more computationally efficient than one which fits a
rectangle into the unswept area.

GRIPPER'S
ENVELOPE

OBJECT " II__

(a)
Figure I 1.

GRIPPER'S

ENVELOPE

OBJECT
• !I!_EI!I_I!I!_

....... i',i',',ii',

(b)
Difference between (a) the inscribed circle and (b) the fit rectangle measures.

5.0 The Complete Plane Sweep Algorithm

A step by step synthesis of an algorithm to solve the gripper envelope problem has been presented.
A pseudocode description of the algorithm is provided as Figure 12.

The complexity of each of the components in the algorithm is presented in Table 1.

Table 1 - Complexities for the Plane Sweep Algorithm

Component Complexity

Placement of Vertices O(N)

Extraction of Vertices O(N)

Plane Sweep Along a Straight Line O(N)

Plane Sweep Through a Simple Rotation O(N)

Halving of a Plane O(N)

Finding Radius of Largest Inscribed Circle O(N)

Complete Algorithm O(M*N*L)

where N is the number of vertices in the obstructing objects,
M is the number of trajectories, and
L is the number of grasp sites per trajectory.
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procedure ANALYZE_GR/PPER_ENVELOPE;

place the vertices of all the obstacles in 3-D space;

extract the vertices of the obstacles to be considered;

for each mating trajectory;

for each trajectory segment;

if segment type is straight line segment then;

for each edge in the obstacles;

project and clip the edge rectangularly;

else;

for each edge in the obstacles;

project and clip the edge cylindrically;

end-if;

for each possible grasp site;

if full plane type then;

find the distance to the nearest obstacle;

else;

discard half the plane;

find the distance to the nearest obstacle;

end-if;

record the distance found above;

end-procedure;

Figure 12. Pseudocode description of the Plane Sweep algorithm.

6.0 Conclusion

The plane sweep algorithm has been implemented in C on a Sun-3 workstation. The appendices
provide some of the results obtained from the algorithm for the class of objects restricted to those
with planar surfaces only and the mating trajectories restricted to sequences of straight line
segments and simple rotations.

These test results demonstrate that the plane sweep algorithm's solution to the gripper envelope
problem provides a satisfactory rating of various assembly sequences. Its ability to analyze and
approximately measure the amount of volume available for an unspecified gripper, given different
mating trajectories, grasp sites and gripper types, makes it useful as an aid in rating and ranking
assembly sequences.

There are many areas in which the

7.0 Future Research

plane sweep algorithm can be enhanced. More complicated

trajectories can be allowed, such as helical straight line translations or even appropriately curved
trajectories. It is only necessary to properly parameterize the environment with respect to the
direction of motion. More complex shapes can also be allowed in the form of cylindrical or
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sphericalsubvolumes.It is also be possible to place some form of cost function on points in the
unswept areas, to give an indication of a gripper angled more in one direction than another. Other
assembly factors can be integrated with this algorithm within the assembly sequence planner to
give a better overall picture as to which assembly sequence may be the best one available.

Research can be performed on other possible applications of an algorithm of this type. Some of the
ideas that come to mind are: applications in obstacle avoidance, motion planning, and determination
of the amount of tracking error allowable during an actual motion.

Figure 13 depicts a mobile robot path planning problem involving the choice of paths either around
or through a set of obstacles. The plane sweep algorithm is useful in determining the size of the
obstacle free area about the robot. By combining the straight line trajectories with the simple
rotations at the trajectory vertices, a very accurate indication of the free space is determined. The
plane sweep algorithm, however, still predicts that the best trajectory is the one avoiding the
obstacles since it is safer. To take into account the effects of trajectory length, a heuristic function
must be implemented which balances the safety issues inherent in the gripper envelope metric with
the mating time issues implied by the trajectory length.
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Appendix A

Sample Test Cases



Case 1: The 2 D-Cell Flashlight

This test case is used to demonstrate the plane sweep algorithm's ability to choose more
appropriate grasp types.

Associated Files: ~/casel.dat

~/case 1.trj

I

I

I

1-FINGER

GRASP

SITE

|

|

1

2-FINGER

GRASP

SITES

BATTERY PARTIAL
FLASHLIGHT

ASSEMBLY

Case 1.

(a) (b) (c)

(a) Stylized two-cell flashlight with one battery installed.Grasp sites available for (b)
one-fingered gripper and (c) two-f'mgered gripper.







casel.dat ptaneSweep Test Cases casel.dat

2
24 17
0.0 0.0 1.0
0.0 0.0 0.0
0.5 1.5 -3.5
1.5 0.5 -3.5
1.5 -O.5 -3.5
0.5 -1.5 -3.5
-0.5 -1.5 -3.5
-1.5 -.0.5 -3.5
-1.5 0.5 -3.5
-0.5 1.5 -3

0.5 1.5 2.5
1.5 0.5 2.5
1.5 -.03 2.5
0.5 -1.5 2.5
-0.5 -1.5 2.5
-1.5 -0.5 2.5
-1.5 0.5 2.5
-0.5 1.5 2.5
0.833 2.5 3.5
2.5 0.833 3.5
2.5 -0.833 3.5
0.833 -2.5 3.5
-0.833 -2.5 3.5
-2.5 -0.833 3.5
-2.5 0.833 3.5
--0.833 2.5 3.5
8 0 1

0.0 0.0
4 0 1

0.707 0.707
4 1 2

1.0 0.0
4 2 3

0.707 -0.707
4 3 4

0.0 -I.0
4 4 5

--0.7O7 -0.7O7
4 5 6

-1.0 0.0
4 6 7

--0.707 0.707
4 7 0

0.0 1.0
4 8 9

0.515 0.515
4 9 l0

0.707 0.0
4 10 11

0.515 --0.515
4 11 12

0.0 ---0.707
4 12 13

-0.515 -0.515
4 13 14

--0.707 O.O
4 14 15

-0.515 0.515
4 15 8

0.0 0.707
16 IO
0.0 0.0 1.0
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-1.0
9
0.0
10
0.0
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0.0
12
0.0
13
0.0
14
0.0
15
0.0
8
0.0
17
-0.686
18
-0.707
19
-0.6867
20
-0.707
21
--0.686
22
-0.707
23
-0.686
16
-O.707
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8

9

IO

11
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13

14

15

16

17

18

19

2O

21

22

23

4 5 6 7
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casel.dat Plane Sweep Test Cases casel.dat _

0.0 0.0 -2.0
0.475 1.425 -1.5
1.425 0.475 -1.5
1.425 -0.475 -1.5
0.475 -1.425 -1.5
-0.475 -1.425 -1.5
-1.425 -0.475 -1.5
-1.425 0.475 -1.5
-0.475 1.425 -1.5
0.475 1.425 1.5
1.425 0.475 1.5
1.425 -0.475 1.5
0.475 -1.425 1.5
-0.475 -1.425 1.5
-1.425 -0.475 1.5
-1.425 0.475 1.5
-0.475 1.425 1.5
8 0 1

0.0 0.0
4 0 1

0.707 0.707
4 1 2

1.0 0.0
4 2 3

0.707 -0.707
4 3 4

0.0 -1.0
4 4 5

-0.707 -0.707
4 5 6

-1.0 0.0
4 6 7

-0.707 0.707
4 7 0

0.0 1.0
8 8 9

0.0 0.0

2 3 4 5 6 7
-1_
9 8
0.0
10 9
0.0
11 10
0.0
12 11
0.0
13 12
0.0
14 13
0.0
15 14
0.0
8 15
0.0
10 11 12 13 14 15
1.0
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casel.trj Plane Sweep Test Cases casel.trj

1 0
1
0.0 0.0 5.75
0.0 0.0 -1.0
-1.0 0.0 0.0
0.0 -1.0 0.0
6.5
3
0 1.425 0.0
0 -1.425 0.0
0 0.0 0.0'-F
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Case2: Peg-in-hole Assembly with Bounding Wall

This test case is used to demonstrate the plane sweep algorithm's ability to choose more
appropriate grasp locations.

Associated Files: ~/case2.dat
~/case2.trj
~/case2.gsp

( ;3,/eli
(a) (d)

I I I
I I

I I

GRASP SITES

(b) (e)

Case 2.

I I

GRASP SITES

(c) (f)

(a) Peg in hole with side wall obstacle assembly. (b) and (c) The gripper envelope for
a hex head bolt in place of the peg. (d) The gripper envelope for a socket attachment.
(e) and (f) The effects of wrench placement which is detectable with a rotational
sweep.
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case2.dat Plane Sweep Test Cases case2.dat -

2
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4 2 3
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0 -2 0
0 -2 1
2 -2 1
2 -2 3
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4 -2 0
1.5 -.5 0
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0 0
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0 1
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0 -1
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-1 0
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0 0
4 2 8

-1 0
4 3 9

0 0
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1 0
4 12 16

1 0
4 13 17

0 -1
4 14 18

-1 0
4 15 19

0 1

8 6
0 0 .5
1 0 1
-1 -1 -2
-1 1 -2
1 1 -2
1 -1 -2
-1 -1 2
-1 1 2
1 1 2
1 -1 2
4 0 1

0 0
4 0 4

0 -1
4 3 7

1 0
4 2 6

0 1
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_ case2.dat planesweep TestCases case2.dat

4 1 5 4 0
-1 0 0

4 4 5 6 7
0 0 1
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case2.gsp Plane Sweep Test Cases case2.gsp

-.5 0-.5 0 "1"
0.5 0.5 "2"
0-.5 0-.5 "3"
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1
0
2
0
105
00 -1
-100
0-10

4
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0 -.50
0O.5
00 -.5

0
105
00 -1
-100
0-10
3.5
4
0.50
0 -.50

-- 00.5
00 -.5
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Case 3: Peg in a Pinched Box

This test case is used to demonstrate the plane sweep algorithm's ability to choose more

appropriate grasp locations.

Associated Files: -/case3.dat
~/case3.trj

Case 3.

|ram

I
|

I
I

GRASPSITES

I I

l l

I I
I I
| |

GRASP SITES

The results of applying the plane sweep to the objects of Figure 4. (a) The gripper
envelope detected for the top-bottom grasp sites and Co) The gripper envelope detected
for the side grasp sites.



I

!
: .H

U

oo_

_3 ........

_LLLL
QO0000

J

4 _t ..... P

L

• I

,!..... i',L_ '_ * , , , ,



case3.dat PianoSweep Test Cases case3.dat
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0 0 0
000
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56O
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45O
44O
240
25O
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110
210
220
42O
410
510
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001
061
561
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211
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4011716 -100
4 1 2 18 17 0 1 0
4 2 3 19 18 1 0 0
4 3 4 20 19 0 -1 0
4452120 100
4 5 6 22 21 0 -1 0
4 6 7 23 22 -1 0 0
4782423 0-10
4892524 100
49102625 010
4 10 11 27 26 -1 0 0
411 122827 010
4 12 13 29 28 1 0 0
4 13 14 30 29 0 1 0
4 14 15 31 30 1 0 0
4 15 0 16 31 0 -1 0

8 6
0 0 .5
3 3 .5
-1 -1 -1
-1 1 -1
1 1 -1
1 -1 -1
-1 -1 1
-1 1 1
1 1 1
I -I 1
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_ case3.dat Plane Sweep Test Cases case3.dat

4 0 1 2 3
0 0 -1

4 0 4 7 3
0 -1 0

4 3 7 6 2
1 0 0

4 2 6 5 1
0 1 0

4 I 5 4 0
-1 0 0

4 4 5 6 7
0 0 1
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case3.trj Plane sweep Test C_s case3.trj

0
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0 -10
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00 .5
00 -.5

Apr 22 14:55 1990
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Case 4: Row of Indicator Lamps

This test case is used to demonstrate the plane sweep algorithm's ability to choose more
appropriate grasp locations and assembly orders.

Associated Files: N/case4.dat

N/case4.trj

0000000

Case 4.

.......... ....:,.:.:.:..,: _.. :_::::_.:

The row of lamps assembly. The presence of any lamps constrains the gripper space
of the rest.
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_ case4.dat Plane Sweep Test Cases case4.dat

40 20
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case4.dat Plane Sweep Test Cases case4.dat _
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0
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5
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_ case4.dat Plane Sweep Test Cases case4.dat
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Case 5: Test of Assembly Order

This test case is used to demonstrate the plane sweep algorithm's ability to choose more
appropriate assembly orders.

Associated Files: -/case5.dat
~/case5a.trj
~/case5b.trj

Case 5. Example test case for ranking assembly operation orderings. A small obstacle in a
semi-cluttered environment with a nearby sidewall.
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_ case5.dat Plane Sweep TestCases case5.dat
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0 0

8 6
0 0 1
4 3 0
0 0 0
0 1 0
I I 0
1 0 0

0 0 1
0 1 I
I 1 1

I 0 I
4 0 1

0 0
4 0 4

Apr 23 10:56 1990

2
-1
7
0
6
0
5
0
4
0
6
1

2
-I
7
0
6
0
5
0
4 •
0
6
I

2
-1
7

3

3

2

1

0

7

Page 1 of case5.dat



case5.dat Planc Sweep Test Cases case5.dat

0 -1 0
4 3 7 6 2

1 0 0
4 2 6 5 1

0 1 0
4 1 5 4 0

-1 0 0
4 4 5 6 7

0 0 1

8 6
0 0 1
5 0 0
0 0 0
0 7 0
2 7 0
2 0 0
0 0 2
0 7 2
2 7 2
2 0 2
4 0 1

0 0
4 0 4

0 -1
4 3 7

1 0
4 2 6

0 1
4 1 5

-1 0
4 4 5

0 0

2
-1
7
0
6
0
5
0
4
0
6
1

3

3

2

1

0

7

Apr 23 10:56 1990 Page 2 of caseS.dat



case5a.trj PLaneSweepTestCases case5a.trj

4
0123
2

0
4.5 3.5 4
0 0 -1
-100
0-1 0
3.5
4
0 .5 0
0 -.5 0
00.5
0 0 -.5

0
4.5 3.5 4
0 0 -1
-1 00
0-1 0
2.5
4
0 .5 0
0 -.5 0
0 0 .5
0 0 -.5

Apr 2310:591990 Page 1 of case5a.trj



case5b.trj P_ne Sweep Test Cases case5b.trj

3
012
2

0
4.53.54
00 -1
-100
0-10
3.5
4
O.5O
0 -.50
OO-5
00 -.5

0
4.53.54
00 -I
-I O0
0 -I 0

2.5
4
0 .50
0 -.50
00.5
00 -.5

Apr 23 11:01 1990 Page 1 of case5b.trj



Case 6: Rotating Bolt

This test case is used to demonstrate the plane sweep
appropriate rotational grasp locations.

Associated Files:

(a)

Head

algorithm's ability to

(d)

choose more

I !

I I

I !

I !

GRASP SITES

(b) (e)

Case 6.

I I
• o

GRASP SITES

(c) (0

(a) Peg in hole with side wall obstacle assembly. (b) and (c) The gripper envelope for
a hex head bolt in place of the peg. (d) The gripper envelope for a socket attachment.
(e) and (f) The effects of wrench placement which is detectable with a rotational
sweep.
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case6.dat Plane Sweep Test Cases case6.dat

2
20 12

0 0 1

0 0 0
0 2 0

0 2 1

2 2 1
2 2 3

4 2 3

4 2 0

0 -2 0

0 -2 1

2 -2 1

2 -2 3

4 -2 3

4 -2 0
1.5 -.5 0

1.5 .5 0

1.5 -.5 1

1.5 .5 1

4 0 6

0 0

6 0 1

0 1

6 6 7
0 -1

4 0 6
-1 0

4 1 7

0 0

4 2 8

-1 0

4 3 9

0 0

4 4 10

1 0

4 12 16

1 0

4 13 17

0 -1
4 14 18

-1 0

4 15 19

0 1

8 6

0 0 .5

1 0 1
-1 -1 -2

-1 1 -2
1 I -2

1 -1 -2

-1 -1 2

-1 1 2

1 1 2

1 -1 2

4 0 1

0 0

4 0 4

0 -1

4 3 7
1 0

4 2 6

0 1

Apr 22 15:38 1990
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-1
2

0

8

0

7

0

8

1

9
0

10

1

11

0

17

0

18

0

19

0

16

0

2

-1
7

0

6

0

5

0

5

3

9

1

2

3

4

5

13

14

15

12

4 5

10 11
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case6.dat Plane Sweep Test Cases case6.dat

4 1 5 4 0
-1 0 0

4 4 5 6 7
0 0 1

Apr 22 15:38 1990
Page 2 of case6.dat



case6.gsp Plane Sweep Test Cases case6.gsp

-.866-.5-.866-.5 "* 1-1"
-.1 1-.025 1.075 ..... -F

Apr 22 16.'22 1990 Page 1 of case6.gsp



case6.trj Plane Sweep Test Cases case6.trj

1
1 0 1.75
001
1.866-.5 1.75
1.6
2
0 .75 0
0 -.75 0

1
1 0 1.75
001
1.866 _5 1.75
1.6
2
0 .75 0
0-.75 0

Apr 22 16:06 1990 Page I of case6.trj



Sweep Shadows of a Cube

This test case is used to demonstrate the various kinds and types of sweep shadows that might be

generated by the plane sweep algorithm.

Associated Files: ~/cube.dat
-/cube.trj

j J

j j
The wire-frame of a cube used to test sweep shadow generation.Cube.
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cube.dat Plane Sweep Test Cases cube.dat

1
8 6
-0.2.5 -0.25
-0.25 -0.25
-0.25 0.25
-0.25 0.25

0.25 -0.25
0.25 -0.25
0.25 0.25
0.25 0.25

4
0 I
-I.0 0.0
4
4 5
1.0 0.0

4
0 2
0.0 0.0

4

I 3
0.0 0.0

4
0 1

0.0 -1.0
4
2 3

0.0 1.0

0.0
-0.25

0.25
-0.25

0.25
-0.25

0.25
-0.25

0.25

3
0.0

7
0.0

6
-1.0

7
1.0

5
0.0

7
O.O'-F

0.0

2

6

4

5

4

6

4.0 0.0 0.0 0.0

Aug 29 13:52 1989 Page 1 of cube.dat



cube.trj Plane Sweep Test Cases cube.trj

1
0
10

0
-2
2.5
0

0
-2
4_5
0

0
-2
6
0

1
100
001
11 0
2.0
0

1
1 lO
0o 1
120
2.0
0

I
111
001
121
2.0
0

1
111
001
-1 11
2.0
0

1
000
01 1
143
2.0
0

1
234
102
536
2.0
0

1
200
0-1.5 0

-2

-2

-2

Apr 2411:071990

-2

-2

-2

Page 1 of cube.trj



- cube.trj P_ne Sweep Test Cases cube.trj

-- 001
6.1
0

Apr 24 11._97 1990 Page 2 of cube.trj



Miscellaneous

This test case is used to generate the orthonormal views of most reasonably sized wire-frame

objects.

Associated Files: ~/view.trj



- view.trj Ptane SweepTestCases view.trj

4
0123
3

0
-I0 0 0
I00
Ol 0
001
20
0

0
0 -10 0
010
001
100
20
0

0
0 0 -10
001
100
O1 0
20
0

Apr 23 10:04 1990 Page 1 of view.trj
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OnLine User's Document



Gripper Envelope Detection Using Sweep
Shadows

Henry L. Welch

March 1992

Abstract

The gripper envelope analysis software derives a single metric for

approximating the volume available for a robot's end-effector during

mating operations. The basic approach of the software is to generate

the straight line and rotational trajectory sweep shadows of obstacles

in the environment and to find the closest distance from grasp sites

to these shadows. The obstacles are limited to objects composed of

planar faces described using a surface modeling technique.

1 Introduction

The size of the gripper envelope is important in the domain of assembly

sequence planning. Its role is even more important if this planning is under-

taken without a priori knowledge of the size and shape of the robot perform-

ing the assembly. The distance metric supplied by this code is intended as a

single value which characterizes the size of the gripper envelope.

The underlying assumption in this solution to gripper envelope detection is

that during a motion there is no relative motion between the object being



graspedand therobot's gripper. This meansthat for certain classesof motion
the cross-sectionalarea swept by the object to be mated (and hencethe
robot's gripper) is constant along the entire length of the trajectory. The
two simplest examplesof these trajectories are straight line segmentsand
simple rotations.

Since the cross-sectionalarea is constant, the cross-sectionalshapeof the

gripper envelope can be found by sweeping a plane along the motions of the

object. As the plane encounters environmental obstacles, areas in the plane

are swept out which represent the sweep shadows of these obstacles. For the

cases of straight Dines segments and simple rotations this is very similar to

projection in cartesian and cylindrical coordinates respectively. To account

for obstacles which may only be partially swept by the plane, clipping and

closure are also required.

Sweep parameters are obtained by converting each sweep trajectory to a

local cartesian coordinate system about the trajectory. Obstacle data is

then converted to this coordinate system and then processed appropriately.

The reported size of the gripper envelope then depends on the location of

the grasp site within the sweep plane. By inscibing the largest possible

circle centered about each grasp site, a single value can be used to describe

the approximate size of the gripper envelope. This value is calculated by

determining the closest sweep shadow point to the grasp site.

The object modeling used by this software is to describe an object as a

set of faces. Each face is then defined as a directed list of vertices (which

describe the edges of the face) with closure between the last and first vertices

assumed. Normals for each surface are also required, but they are currently

not required to be directed outward.

NOTE: This software requires that all trajectories and grasp sites supplied

by the user do not intersect with any of the obstacles.

For more information on these algorithms and possible applications of the

gripper envelope see "Solution to the Gripper Envelope Problem Using a

Planar Sweep," CIRSSE Report 111, Rensselaer Polytechnic Institute and

"Robot Independent Assembly Sequence Planning," Ph.D. Thesis, Rensse-



laer Polytechnic Institute, August 1990.

2 Requirements

The gripper envelope code was developed on a SUN3/60 workstation under

the Unix 4.0.2 operating system. It must be linked to the standard I/O

library and the math library. This code was recompiled and tested on a

SUN4 system with no difficulties.

In order to use the aliases in Section 4.2, the graph and sunplot utilities

must be available and supported on your system. If they are not available,

an utility which plots unconnected line segments followed by labels in double

quotes will perform the same function.

Very little consistency checking on the input data is performed. This re-

quires that the user makes sure that CAD objects are consistent and that all

cartesian coordinate systems are defined by orthogonal bases.

It is very important to remember that the gripper envelope code assumes

that all trajectories are collision-free and that grasp sites do not intersect the

obstacles. Correct results are not guaranteed when these connections are not

met.

3 Build Procedure

Installation of the gripper envelope software is facilitated by the inclusion of

a Makefile. Currently the Makefile compiles and links the gripper envelope

code with the file test.c. This can be easily updated for your particular

application by modifying the entries for test and all in the Makefile.

To compile and link the software, simply execute the Unix command 'make

all' from the directory containing all the gripper envelope code.



4 User's Guide

The primary usage of tile gripper envelope software is to generate and test

the sweep shadows of environments. The basic flow of the software is:

1) Read CAD data

2) Preprocess CAD data to internal form

3) Load Trajectory data

4) Sweep the CAD data through the trajectory

5) Load Grasp data

6) Test each Grasp Point

7) Save necessary information

Code performing this basic function is provided in the file test.c. The pro-

gram test will prompt the user for two file specifications with the default

directory being the current one. The first specification is for the CAD data

file. The second contains the trajectory and grasp information to test.

The following deficiencies in the algorithm are currently known.

1) The dump_rot_plane routine does not always generate line segments which

completely describe the curves they are to represent. This may result in

object edges that do not always meet at vertices. In certain extreme cases,

this may result in slightly erroneous results from the distance generation

function.

2) Planar faces with holes are not currently supported by the CAD data

structure. To work around this deficiency, add an extra edge which connects

the hole to the outer edge of the face and divide the face into two faces. This

will generate extra edges in the sweep plane, but will not effect the results

of the distance geneation functions.



4.1 Data File Formats

There are two types of input file used by the test feature of the gripper

envelope system. The first is used by the read_CAD routine and processes

a surface model of all the objects in the current system. The format of this
file is:

Number_of_Objects

/* For each object */

Number_of_Vertices Number_of_Faces

/* Orientation and positioning data w.r.t, default origin */
Theta_Rotation Phi_Rotation Scale

X_Translation Y_Translation Z_Translation

/* For each vertex */

Vertex_X Vertex_Y Vertex_Z

/* For each face */

Vertex_Count Vertex_List

Normal_X Normal_Y Normal_Z

Many examples of the use of this data style can be found in the case#.dat

files. To view the ori_honormal projections of objects along the x-, y-, and

z-axes run the test code with your CAD data file and the view.tlj trajectory

file and then plot the dump files. Be sure to modify the top of view.trj so

the proper number of objects are specified.

The second type of input data file for the test system contains the trajectory

and grasp information. The format for this file is:

Number_okObjects_.Assembled/* This may differ from the CAD file */

5



List_of_Assembled_Objects

Number_of_Trajectories

/* For each Trajectory */

Trajectory_Type

/* If Trajectory_Type == 0 then straight line trajectory */

Origin_X Origin_Y Origin_Z

/* The next three vectors describe a unit orthogonal basis */

Trajectory_Dir_.X Trajectory_Dir_Y Trajectory_.Dir_Z

Basis2_X Basis2_Y Basis2_Z

Basis3_X Basis3_Y Basis3_Z

Length_of_Trajectory

/* Else if Trajectory_Type == 1 then rotational trajectory */

Origin_X Origin_Y Origin_Z

Rot_Normal--X Rot_Normal_Y Rot._Normal_Z

Reference._X Reference_Y Reference_Z

Angle_to_Rotate_Through

/* EndIf */

Number_of_Grasp_Sites

[* For each Grasp Site */

Grasp_Type

Grasp_X Grasp_Y /* In sweep coordinates */

/* If Grasp_Type == 1 then only half the sweep need be checked */
Normal_X Normal_Y



4.2 Useful Aliases

Some useful aliases when using the dump_plane and dump_rot_plane routines

to display the data.

alias g graph -g 0 -b <dump\!* ] sunplot

alias gg graph -b <dump\!, ] sunplot

alias gc cat dump\!, grasp.dat ] graph -g 0 -b ] sunplot

These aliases use graph and sunplot to generate visual representations of the

sweep data without a grid, with a grid, and with grasp data respectively.

They are to be used with a single parameter which is a number representing

the trajectory number to display. These correspond to the dump# files

created by the dump plane routines.

A Manifest

This appendix contains a list of all the files included with the gripper envelope

software package.

A.1 Initialization Files

Makefile -

const.h -

data.h -

envel.h -

renvel.h -

The make file for the source code. Invoked 'make all'.

Constants used throughout the code.

CAD data structure used.

Special straight line data structures.

Special rotational data structures.



info.tex - Generates this report.

README - Tells how to generate this report.

A.2 Code Files

envel.c -

minr.c -

renvel.c -

rotate.c -

sweep.c -

Support routines for straight line sweeps.

Computes the minimal radius line for a face.

Support routines for rotational sweeps.

Computes the rotational sweeps.

Conputes the straight line sweeps.

sweepio.c - I/O routines for the package.

A.3 Test Case Files

test.c - Sample calling frame for using the gripper envelope code.

casel .dat

casel.trj - A straight line test case of a two D-cell flashlight.

Tests GRASP TYPE

case2.dat

case2.trj

case2.gsp - A straight line test case of a peg-in-hole with nearby obstructing wall.
Tests GRASP LOCATION



case3.dat

case3.trj - A straight line test case of a peg in a pinched box.
Tests GRASP LOCATION

case4.dat

case4.trj - A straight line test case of a line of indicators.

Tests GRASP LOCATION

case5.dat

case5a.trj

case5b.trj - A straight line test case of the effects of assembly order.

Tests ASSEMBLY ORDER/TRAJECTORIES

case6.dat

case6.gsp

case6.trj - A rotational test case similar to case 2, but with the rotation of a
bolt head.

Tests ROTATIONAL GRASP LOCATION

cube.dat

cube.trj - The original test object with multiple straight line and rotational

trajectories. No grasp sites.

Tests SWEEP CALCULATIONS

grasp.dat - The location of grasp sites in the test case.

view.trj - Orthonormal views of the objects along the primary axes.

B Error Messages

There is very little data checking that takes place within the gripper envelope

software. This is due primarily to its role as a subfunctin within an assembly



sequence planner which generates consistent coordinate data.

The routine read_CAD reports when tlw CAD file input is not found and

prompts the user for another.

The test code also reports an inappropriate trajectory file name and prompts

the user for another.
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Software Listings



Makefile Makefile

_ ***$ * $ $ $1g III$$ ** O _ $* $111 $ $ II15 _ _*_ _ $ $ $_ _ll$ $ $ O $_ $ $ _1* $ * ** lit _$* _* _** _** lit $ ** *$*111'_ * /

#/*

# I* This Makefile provides the necessary commands to compile and install * I
# I* the planar sweep alogorithms test code.
# I*

#/* Written by." HLW June 1990

#1"
# ************************************************************************ /

# Host C--compiler
CFLAGS = -O -fsingle
LIBS = -lm

# Host object files
COBJ = sweep.o envel.o test.o sweepio.o renvel.o rotate.o minr.o
TNGON =

all: test

test: *(COB J)

$(CC) $(CFLAGS) -o test $(COBJ') $(LIBS)

tesLo: tesLc envel.h data.h const.h

minx.o: rninr.c envel.h data.h const.h

sweep.o: sweep,c envel.h data.h const,h

envel.o: envel.c envel.h const.h

sweepio.o: sweepio.c envel.h data.h const.h

renvd.o: renvel.e envei.h const.h

rotate.o: rotate.c envel.h data.h const.h

clean,"

install: test

rm -f *.o *.obj *,asm *.map *_map.h *.lst *% core ngon.abs

mv test /home/welch/bin

spotless: clean
sccs clean

*/

*/

*1
*1

*1

Aug 22 14:22 1990 Page I of Makefile



envel.c Plane Sweep Software Listing envel.c

/,
NOTICE OF COPYRIGHT

Copyright (C) Rensselaer Polytechnic Institute.
1990 ALL RIGHTS RESERVED.

Permission to use, distribute, and copy is granted ONLY

for research purposes, provided that this notice is
displayed and the author is acknowledged.

This soJhcare is provided in the hope that it will be

useful BUT, in no event will the authors or Rensselaer

be liable for any damages whatsoever, including any lost

profits, lost monies, business interruption, or other

special, incidental or consequential damages arising out

of the use or inability to use (including but not

limited to loss of data or data being rendered

inaccurate or losses sustained by third parties or a

failure of this software to operate) even if the user

has been advised of the possibility of such damages, or
for any claim by any other party.

This software was developed at the facilities of the

Center for Intelligent Robotic Systems for Space

Exploration, Troy, New York, thanks to generous project

funding by NASA.

Package: Gripper Envelope Detection Using Sweep Shadows

Written By: Henry L. Welch

I

* enveLc -- This module comains the support routines to handle *

* the 2-D plane sweep for the gr_oper envelope problem. *

* Written by: HLW June, 1989
********************************************************************** /

/* The following conventions are assumed throughout:

*1

1) Coordinates are seen as row matrices.

2) Transformation matrices are right-multiplied.

#Include <stdio.h>
#Include <math.h>
#Include "envel.h"

#Include "consLh"

void mat3inv (inmat, outmat)

float inmat[3][3];
float outmat[3][3];

/* Input matrix * I
/* Inverse matrix * I

I* The routine mat3inv, inverts the matrix inmat using Gauss-Jordan
elimination and returns the result in the matrix outmat.

The matrices are all considered to be 3x3. * /

I* This routine ASSUMES that the input matrix is non-singular. */

{
#define size 3

int i,j,k;

I* The matrix sizes * I

I* Loop indices * I

Aug 22 14:04 1990 Page 1 of envel.c



envel.c Plane Sweep Software Listing envel.c

float pivot:
float null;

float swap;
float tmpmat[3][3];

1. Initialize the output matrix to the identity */
for (i = O; i < size; i++) {

for (j = O; j < size; j++) {
tmpmat[i][j] = inmat[i][j];
outmat[i]lj] = 0.0;

}
outmat [i][i] = 1.0;

}
I* Begin scanning the rows */

for (i = O; i < size; i++) {

I* check the pivot element * I

pivot = tmpmat[i][i];

If (pivot _-- 0.0) {
t* scan for a non-zero pivot element * I

j=i+l;
while (tmpmat[j][i] == 0.0) j++;

I* swap the rows * I
for (k = O; k < size; k++) I

swap = tmpmat[i][k];

trnpmat[i][kl = tmpmat[j][k];

trnpmat[j][k] = swap;

swap = outmat[i][k];
outmat[i][k] = outmat[j][k];

outmat[j][k] = swap;

}
pivot = tmpmat[i][i];

} 1. end if (pivot */

1. invert the pivot and normalize the diagonal element * I

pivot = 1.0 / pivot;
for (k = O; k < size; k++) [

mapmat[i][k] = tmpmat[i][k] * pivot;

outmat[i][k] = outmat[i][k] * pivot;

}

1. clear the pivot element's column */

for (j = O; j < size; j++)

tt 0 _= i) {
null = -tmpmat[j][i];

for (k = O; k < size; k++) {
tmpmat[j][k] += null * tmpmat[i][k];

outmatljllkl +=- null * outmat[i][k];

I
} /* end gO != */

} 1. end for (i = 0 */
} 1. end routine mat3inv */

void mat4mul (matl, mat2, outmat)

float mat1[4][4], mat2[4][4], outmat[4l[4];

/* The pivot value * /

1. The value to null * I

I* Temp. swap storage */

1. Scratch storage */

/* The 4x4 matrices */

1. The routine mat4mal multiplies the two 4x4 matrices matl and mat2 to

find outmat. Marl will be multiplied left of mat2. */

{
int id,k; /* Loop indices * I

#define sz 4

Aug 22 14:04 1990 Page 2 of enveI.c



envel.c Plane Sweep Software Listing envel.c

1. loop on rows * /
for (i = O; i < sz; i++)

1. loop on columns * /

for (j = O; j < sz; j++) {
outmat[i][j] = 0.0;

/* perform summing multiplication */
for (k = O; k < sz; k++)

outmat[i][j] += matl[i][k] * mat2[k][j];
}

1. routine mat4mul */

void do xf:m (xfm, invert, outvert)

float xfm[4][4];
struct t coord4 invert;

struct c_rd3 *outvert;

/* Transformation matrix * I

/* Incoming vertex */
/* Transformed vertex */

1. The routine do_xfm performs the homogeneous transformation xfm to the

vertex invert and generates a 3-D point outvert */

{
int i; 1' Loop ind/ces */

/* loop on each coordinate of the vertex */

for (i = O; i < 3; i++) {

outvert->pt[i] = 0.0;

/* perform coordinate transformation * I

outvert->pt[i] = invert.x * xfm[O][i];

outvert->pt[i] +=- invert.y * xfm[1][i];

outvert->pt[i] += invert.z * xfm[2][il;

outvert->pt[i] +=-invert.w * xfm[3][i];

! 1*/or (i */
1" routine do_xfm * /

void findloc (point, origin, basis, loc)

float point[3];
float origin [3];
float basis[3][3];

float 1oc[3];

/* Point to project * /

/* Origin for basis */
/* Inverted basis matrix */

I* Location in basis space * I

I* The routine findloc projects a point onto a basis w.r.t an arbitrary

coordinate system origin. The result is returned in loc. * /

int i,j;
float diff[3];

I* Loop indices * I

I* Difference vector * I

1. fred the location

for (i = O; i < 3;

difffi] = point[i]

of the point relative to the origin */
i++)

- orlgin[i];

1. ]'rod the location via matrix multiplication * /

for (i = O; i < 3; i++) I

loc[i] = 0.0;

for (j = O; j < 3; j++)

loc[i] += basis[j][i] * difflj];

} 1. for (i = 0 */
I* routine findloc */

int sweepseg (origin, basis, length, pl, p2, segment)
float origin[3]; /* Origin for basis */

Aug 22 14:04 1990 Page 3 of envel.c



envel.c Plane Sweep Software Listing envel.c

float basis [3][3];
float length;

float pl[3],p213];

struct seg *segment;

/* Inverted basis matrix * I

/* Length of sweep * I

/* Endpoints of segment * /

/* 2-D segment * I

l* The routine sweepseg sweeps a plane described by an origin and basis

along the trajectory traj for a distance length. The endpoints of the

line segment defined by pl and p2 in the swept plane are returned as
2-D coordinates in ot71 and op2. If the segment is not swept by the plane,

then the routine returns O; otherwise it returns 1. */

float proj 1[3],proj213];
float zl, z2;

float diffI3];

int i;

/* The projections of pl, p2 * /

/* Traj. direction coords. */
/* Projection differences * I

I* A loop index * l

[* project the two points */
findloc (pl, origin, basis, projl);
zl = projl[O];

f'mdloc (p2, origin, basis, proj2);

z2 = proj2[O];

for (i = O; i < 3; i++)

diff[i] = proj2[i] - projl[i];

l* Determine if the segment is even swept * I

if ((zl < 0.0) & (z2 < 0.0))

return(O);
else if ((zl > length) & (z2 > length))

return(O);

else {
/*
/*

If

clip the segment if it needs it */

deal with point 1 first */
(zl < 0.0) {

projl[1] += -zl * diff[1]/diff[O];

projl[2] += -zl * diff[2]/diff[O];
}

else if (zl > length) {

projl[1] += (length - zl) * diff[1] /diff[O];

projl[2] += (length - zl) * dirt[2] /diff[O];

!
/,

if
deal with point 2 */

(z2 < 0.0) {

proj2[1] +=-z2 * diff[1]/diff[O];

proj2[2] +=--z2 * diff[21/diff[O];

]
else if (z2 > length) {

proj2[1] +=- (length - z2) * difql]/diffIO];

proj2[2] +=- (length - z2) * diff[2] /diftlO];

}
I* clipping complete, copy the results and return * /

for (i = O; i < 2; i++) [
segment->pl[i] = projl[i+l];

segment->p2[i] = proj2[i+l];

I
return(l);

} /* e/se * /

/* routine sweepseg */

void d_.pt2seg(point, segment, d, pc)
float point[2]; /* point in 2D *1
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struct seg segment;
float *d;

float pc[2];

/* segment end--points * I
/* the closest distance * I

I* the closest point */

/* The routine d_pt2seg determines the closest point on the line segment
pl p2 to point and returns that point as pc, along with the distance tf2.

The routine generates a line from pl toward p2 and determines the closest

point on this line as represented by the parameter m. if m is not in

the range [0,11 then the appropriate endpoint is returned. * I

{
float m;

#define xl segment.pl[O]
#define yl segment.pl[1]
#define x2 segmenLp2[O]
#define y2 segment.p2[l]
#define x point[O]
#define y point[l]

1" projection on segment * I

[* find the value of m that satisfies the equation that the first

derivative of the euclidean distance is O. * I
m = ((x2 - xl)*(x2 - xl) + (y2 - yl)*(y2 - yl));

if (m _ 0) { /* The segment is only a point */

pc[0] = xl;
pc[l] = yl;

}
else { /* process normally */

m = ((x2 - xl)*(x - xl) + (y2 - yl)*(y - yl)) / m;

/* clip m * /
If (m > 1.0) m = 1.0;

if (m < 0.0) m = 0.0;

/* fred the distance and the point to return */
pc[0] = xl + m*(x2 - xl);

pc[l] = yl + m*(y2 - yl);

I* end else of if (m == 0 * /

*d = (x - pc[O])*(x - pc[O]) + (3' - pc[ll)*(y - pc[l]);

} /* routine d_.pt2seg * /

int half_plane(inplane, incount, origin, normal, outplane, outcount)
struct seg inpIane[2*TOT_VERTS]; I* Unclipped segments */
lnt incount; I* # of segments * I

float origin[2]; I* point on clipping plane * I
float normal[2]; I* outward normal of plane * /

struct seg outplane[2*TOT_VERTS]; /* Clipped half plane * I
lnt *outcount; /* # of output vertices */

[* The routine half..plane clips a set of line segments within a plane so
that they lie in the half plane def'med by a normal and point. The

resulting segments and their number are computed with the count being
returned.

NOTE: This routine assumes no overlap of the segments which define the

swept objects and the origin point of the clipping plane. * I

int i,j; /* Loop ind/ces */
float dod, dot2; /* Dot products * /
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float proj; /* Point locator * /

/* initialize the output count and loop on all the input segments */
• outcount = O;
for (i = O; i < incount; i++) {

[* Find the dot products of the endpoints with the normal * I
dotl = dot2 = 0.0;

for (j = O; j < 2; j++) {
dotl += normal[j] * (inplane[i].pl[j] - origin[j]);
dot2 +=- normal[j] * (inplane[i].p2[j] - origin[j]);

}

[* Check for clipping of the en@oints */
if ((dotl >=- 0.0) & (dot2 >= 0.0)) {

for (j = O; j < 2; j-w,) {
outplane[*outcount].pl[j] = inplane[i].pl[j];
outplane[*outcount].p2[j] = inplane[i].p2[j];

3
• outcount = *outcount + 1;

}
else if (((dot1 < 0.0) & (dot2 >= 0.0)) I

((dot2 >= 0.0) & (dot2 < 0.0))) {

/* One end must be clipped * I

proj = normal[O] * (inplane[il.pl[O] - origin[O]) +
normal[l] * (inplane[i].pl[l]- origin[l]);

proj = proj / (normal[O] * (inplane[i].pl[O] - inplane[i].p2[O]) +
normal[i] * (inplane[i].pl[1] - inplane[i].p2[1]));

l* See which end */
if (dotl < 0.0)

for (j = O; j < 2; j++) {
outplane[*outcount].pl[j] = inplane[i].pl[j] * (1.0 - proj)

+ inplane[i].p2[j] * proj;

outplane[*outcount].p2[j] = inplane[i].p2[j];

}
else for (,j = O; j < 2; j ++) {

outplane[*outeount].p2[j] = inplane[i].pl[j] * (1.0 - proj)
+ inplane[i].p2[j] * proj;

outplane[*outcount].pl[j] = inplane[i].pl[j];
}

• outcount = *outcount + 1;

} I* else if (((dotl */
} I* for (i = 0 */
retnra(*outcounO;

I* routine half_plane * I
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]*

*/

NOTICE OF COPYRIGHT

Copyright (C) Rensselaer Polytechnic Institute.
1990 ALL RIGHTS RESERVED.

Permission to use, distribute, and copy is granted ONLY

for research purposes, provided that this notice is

displayed and the author is acknowledged.

This software is provided in the hope that it will be

useful. BUT, in no event will the authors or Rensselaer

be liable for any damages whatsoever, including any lost

profits, lost monies, business interruption, or other

special, incidental or consequential damages arising out

of the use or inability to use (including but not

limited to loss of data or data being rendered

inaccurate or losses sustained by third parties or a

failure of this software to operate) even if the user

has been advised of the possibility of such damages, or

for any claim by any other party.

This software was developed at the facilities of the
Center for Intelligent Robotic Systems for Space

Exploration, Troy, New York, thanks to generous project

funding by NASA.

Package: Gripper Envelope Detection Using Sweep Shadows

Written By: Henry L. Welch

**********************************************************************

* minr.c -- This module contains the support routines to handle *
* the calculation of the minimal radius edge for *

* rotational sweep shadows.
,

* Written by: HLW November, 1989
********************************************************************** /

1. The following conventions are assumed throughout:

*1

1) Coordinates are seen as row matrices.

2) Transformation matrices are right-multiplied.

#Include <stdio.h>
#include <math.h>
#Include "envel.h"

#Include "const.h"

int getmlnline(point, normal, refpt, step)

float point[3];
float normal[3];
float refpt[3];

float step[3];

/* A point on the plane * [

/* Normal of the plane * I

/* Nominal start pt of line */
/* Parametric step of line * I

I* The routine getminline computes the minimal radius line on a plane for
a rotational sweep shadow. It returns a value of 0 when the line

exists and a value of 1 when the line degenerates to a point (ie
7. = const. * [
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#define A normal[0]
#define B normal[l]

#define C normal[2]
float D;

float temp;

/* Planar values in the * I

/* form Ax + By + Cz = D */

/* Scratch storage */

/* Compute the D parameter */
D = A'point[0] + B*poim[l] + C'point[2];

I* Check for degenerate cases * I
if ((A _ 0.0) & (B _--- 0.0)) /* Plane is constant z */

return(l);
else If (B _--- 0.0) {

/* y defaults to zero * I

refpt[0] = D/A;

refpt[ll = 0.0;
refpt[2] = 0.0;

step[0] = -C/A;

step[l] = 0.0;

step[2] = 1.0;
return(0);

I
else { /* This is the normal case * I

temp = A*A + B'B;
refpt[0] = A*D hemp;

refpt[1] = (D - A*refpt[0])/B;

refpt[2] = 0.0;

step[0] = -A*C/temp;

step[l] = (D - C - A*(refpt[0] + step[0]))/B - refpt[1];

step[2] = 1.0;
return(0);

}
]* routine getminline * /

lot edge_clip(proj, refpt, step, loc)

struct trap_rot *proj;

float refpt[3];

float step[3];
float *loc;

/* Projected edge */
/* New edge ref. pt. */
1" Parametric step */

/* Parametric location * /

1" The routine edge._clip determines the intersection point between the

edge described in proj and the parametric line described by refpt and
step. The parametric location on the line is returned in loc. Since

there are many non-applicable possibilities, a return code is employed.

Its values are: 0 - Intersection at a point
1 - Intersection at start point of edge

2 - Intersection at end point of edge

4 - Intersection along the entire edge

8 - No Intersection

*1

float difq3];
int i;
float eloc;

int parallel;
int same;

/* Difference vector * I

I* Loop index * I

/* Location on the edge */
I* Condition flag */

[* Compute the difference vector for the edge */
for (i = 0; i < 3; i++)

diff[i] = proj->rp3[i] - proj->rpl[il;
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l* Check for edge and line parallel */
parallel = TRUE;
for (i = 0; i < 2; i++)

if ((diffI2]*step[i]) != diff[i]) parallel = FALSE;

I* Determine if the line is the same as the edge */
if (parallel = TRUE) {

same = TRUE;
for (i = 0; i < 2; i++)

if ((rent[i] + proj->rpl[2]*step[i]) l= proj->rpl[i]) same = FALSE;
If (same _ TRUE)

return(4);
else return(8);

}
else { /* An imersection occurs * I

[* Compute the parametric intersection point on the edge * I

I* NOTE: step[2] = 1.0 and refpt[2] = 0.0 and are not included! * ]

eloc = (diftI1] - step[1]*diftI2]);

I* check for degenerate case * /
if (eloc == 0.0) {

eloc = 1.0/(cliff[0] - step[0]*diftI2]);
eloc = eloc * (refpt[0] - proj->rpl[0] + step[0]*proj->rpl[2]);

I* if eloc is out of range, discontinue processing * I

if ((eloc < 0.0) I (eloc > 1.0))

return(8);

else { I* Compute the intersection poim */

• loc = proj->rpl[2] + eloc*difq2];

/* return the appropriate code */

if (eloc m_ 0.0) return(l);

else if (eloc == 1.0) return(2);
else return(O);

}
}

else {
eloc = 1.0/eloc;

eloc = eloc * (refpt[l] - proj->rpl[1] + step[1]*proj->rpl[2]);

I* if eloc is out of range, discontinue processing * I
If ((eloc < 0.0) I (eloc > 1.0))

return(8);

else { /* Compute the intersection point */

• loe = proj->rpl[2] + eloc*diff[2];

/* return the appropriate code * /

if (eloc -- 0.0) return(l);
else if (eloc == 1.0) return(2);

else return(O);

}
}

} l* Intersection occurs * /

l* Routine edge_clip */

int vcross(vl, v2, cross)

float vl[3];
float v213];
float cross[3];

/* Vector 1 * I
/* Vector 2 * I

/* Cross Product * /

Aug 22 14:29 1990 Page 3 of minr.c



minr.c Plane Sweep Software Listing minr.c

I* The routine vcross computes the cross product of two vectors and

returns the result. If vl and v2 are parallel,then a return code

of I is supplied; otherwise the return code is O. */

[* Compute the cross product */
cross[O] = villi*v2[2] - vl[2]*v2[1];

cross[l] = vl[2]*v2[O] - vl[O]*v212];
cross[2] = vl[O]*v2[l] - vl[1]*v2[O];

l* Check for parallel vectors * /

if ((cross[O] = 0.0) & (cross[l] _ 0.0) & (cross[2] == 0.0))

return(l);

else return(O);
1" Routine vcross * I

int is_cross(vl, v2, red

struct tmp_rot *vl, *v2;
float refI3];

/* Vectors to test * ]

/* Reference vector * I

l* The routine is cross compares the cross products of the two edges with the

reference vector to determine if a cross over occurs. TRUE is returned
when this occurs. * /

float dl[3],d2131;
float ml.m2;

float c113],c213];
int dif;
int i;

I* Edge diff vectors * I

I* Magnitude values * I

/* Cross products * I
/* Boolean flag * I

/* Loop index * I

/*
for

Generate the two edge difference vectors */
(i = O; i < 3; i++) {

dl[i] = vl->rp3[i] - vl->rpl[i];
d2[i] = v2->rp3[i] - v2->rpl[i];

I* Find the cross products */
dif = vcross(vl, ref, cl);

dif = vcross(v2, ref, c2);

l* Normalize the two vectors * /

ml = m2 = 0.0;
for (i = 0; i < 3; i-c+) {

ml += cl[i] * cl[i];

m2 +=- c2[i] * c2[i];

ml = (float)sqrt((double)ml);

m2 = (float)sqrt((double)m2);

for (i = O; i < 3; i++) {
cl[i] = cl[i] / ml;

c2[i] = c2[i] / m2;

l* Compare the two vectors * /
dif = FALSE;
for (i = 0;, i < 3; i++)

if (clti] l= c2[i]) dif = TRUE;
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retura(dff);
} /* Routine is cross * I

void do_mirtr(proj, num, norm, hO, refO, refm, thetamax, rot_plane, count)

struct trap rot proj[MAX_VERTS_FACE];
lnt num;
float norm[3];
float hO;

float ref0[3],refm[3];
float thetamax;

struct rot_seg rot_plane[4*TOT_VERTS];
int *count;

I* Current face * I

I* Edges on the face */
]* Normal of the face * /

I* height @ r=O *I

/* Ref. clio vectors * I
/* Clip theta * /

/* Clipped edges */

1" # cl_ped edges * /

/,The routine do minr computes the minimum radius of the shadow and
performs the _ojections necessary to place the shadow into the

rotational sweep plane. * I

float refpt[3];

float step[3];

float loc[MAX_VERTS_FACE];
int code;

int scode;

int ptr;
int cnt,
lnt last;
lnt i,j;
float swap:
int spur;
float temp;

struct trap_rot minr[MAX_VERTS_FACE];
float tmax;

/* Ref. pt. of mint line * I

I* Para. step of line * /

[* Para. pts on line * I

I* edge_cl_o rtn code * I

1" Rtn code of 1st edge */

l* Pointer of edge list * I
/* Counts # intersect. * I

I* Temporary memory */
/* Loop indices * /
1" Sorting variable * I

/* Pointer to 1st edge * I

1" Temporary data */

I* Mint edges */

/* Actual thetamax * I

[* Find the parameters of the minimal radius line */

code = getminline(proj[O].rpl, norm, refpt, step);

I* Intersect the line with the face */

if (code != 1) {

I* Intersect with the first edge * /
ptr = cnt = O;

scode = code = edge_clip(&proj[ptr], refpt, step, &loc[cnt]);

[* Skip over initial edges that are on the minimal radius line */

while ((ptr < (hum-l)) & (code _ 4)) [
pur++;

code = edge_clip(&proj[ptr], refpt, step.&loc[ent]);
}

/* Remember this edge */

spur = ptr;

/* Do the remaining edges */

while (pur < hum) {

1" Check the edge * 1

code = edge_clip(&proj[ptr], refpt, step, &loc[cnt]);
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1. Determine the type of edge */
if (code == O) { cnt++;

}
else if (code == 2) {

1. Skip to edge of edge [vertex intersection pair * 1

last = ptr;
code = 4;
while ((ptr < (num-1)) & (code _ 4)) {

ptr++;
code = edge clip(&proj[ptr], refpt, step, &loc[cnt]);

}

I* if not at end, process intersection * /
If (code I= 4)

if (is_cross(&proj[ptr], &projIlast], step) == TRUE) {
cnt-I-+;

}
else cnt = cnt - 1;

} I* else if code = 2 *1

/* go to next edge */

p_++;
I* while ptr < man */

1. check for processing over the closure */
if ((code _--- 4) 1 (code -= 2))

if (is_cross(&proj[last], &proj[sptr], step) == TRUE) {

cnt+-.I-;
}

else ent = cnt - 1;

1. Sort the parametric points * /

for (i = O; i < (ent - I); i++)
for (j = (i + 1); j < ent; j++)

If 0oc[i] > loc[j]) {
temp = loc[i];

loc[i] = locUl;

loc[j] = ternp;

}

t* Convert the parametric points to edges * /

ptr = O;
for (i = O; i < cnt; i += 2) {

1. Copy over the start, middle, and end points */
temp = 0.5"(loc[i] + loc[i+l]);

for (j : 0; j < 3; j++) {

minr[ptr].rplU] = refpt[j] + step[j]*loc[i];
mirtrtptrl.rp3[j] = refpt[j] + step[j]*ioc[i+l];
minr[ptr].rp2[j] = refpt[j] ÷ step[j]*temp;

}
1. Compute the theta values */

If ((minr[ptr].rpl[0] --= 0.0) & (minr[ptr].rpl[1] == 0.0))
minr[ptr].th[0] = 0.0;

else

minr[ptx].th[0] = (float)atan2((double)minr[pg].rpl[1],

(double)minr[ptrl.rpl [Of);

If ((mimIptr].rp2[O] == 0.0) & (minr[pu'].rp2[l] == 0.0))

mirtr[ptr].th[1] = 0.0;
else

rninr[ptr].th[1] = (float)atan2((double)minr[ptr].rp2[1],
(double)minr[ptrl.rp2[O]);
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if ((minr[ptr].rp3[O] == 0.0) & (minr[p_].rp3[1] == 0.0))
minr[pg].th[2] = 0.0;

else
minr[ptr].th[2] = (l'loat)atan2((double)mirtr[ptrl.rp3[1],

(double)minr[p_].rp3[O]);

for (i = O; i < 3; i++)
if (mirtr[p_].th[i] < 0.0)

mim[ptr].th[i] += 2*pi;
/* for i = 0 */

I* clip the minimal radius edges * I
ent = ent / 2;
Ixnax = thetamax;

if (thetamax > pi) { /* Sweep in two sections */

for (i = O; i < cnt; i++)
code = rot_clip(&minr[i], 1.0, refO, refO, pi, hO,

rot_plane, count);
rot reflect(mirtr, cnt);
for (i = O; i < cnt; i++)

code = rot._clip(&minr[i], -1.0, refO, refO, pi, hO,
rot_plane, count);

Wnax = thetamax - pi;

for (i = O; i < cnt; i++)
code = rot_clip(&minr[i], 1.0, refO, refm, tmax, hO,

rot_plane, count);

rotreflect(minr, cnt);
for (i = O; i < cnt; i++)

code = rot_clip(&minr[i], -1.0, refO, refm, tmax, hO,
rot_plane, count);

} /* /]'code <> 1 */
} 1" routine do mint * I
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/*
** NOTICE OF COPYRIGHT

** Copyright (C) Rensselaer Polytechnic Institute.
** 1990 ALL RIGHTS RESERVED.

** Permission to use, distribute, and copy is granted ONLY

** for research purposes, provided that this notice is

** displayed and the author is acknowledged.

** This software is provided in the hope that it will be

** useful BUT, in no event will the authors or Rensselaer
** be liable for any damages whatsoever, including any lost

** profits, lost monies, business interruption, or other

** special, incidental or consequential damages arising out
** of the use or inability to use (including but not

** limited to loss of data or data being rendered
** inaccurate or losses sustained by third parties or a

** failure of this software to operate) even if the user
** has been advised of the possibility of such damages, or

** for any claim by any other party.

** This software was developed at the facilities of the

** Center for Intelligent Robotic Systems for Space

** Exploration, Troy, New York, thanks to generous project

** funding by NASA.

** Package: Gripper Envelope Detection Using Sweep Shadows

** Written By: Henry L. Welch

*1
**********************************************************************

* renvel.c -- This module contains the support routines to handle *

* the 2-D plane sweep for the groper envelope problem. *

* Rotational routines only.

* Written by: HLW November, 1989
******************************************************_*_¢************* /

/* The following conventions are assumed throughout:

*/

1) Coordinates are seen as row matrices.

2) Transformation matrices are right-multiplied.

#Include <stdio.h>
#Include <math.h>
#include "envel.h"

#include "¢onst.h"

void getrotref(rot, origin, thetam, pt, ref, refO, refm)

float rot[3];

float origin[3];
float thetam;

float pt[3];

float ref[3][3];

float refO[3];
float refm[3];

/* rotation axis */
I* origin of rotation */

1" theta maximum * I

/* point to reference */
l* coord, sys. xform. */

/* ref. vector for thetaO */

/* ref. vector for thetamax * I

I* The routine getrotref determines the reference matrices for the
theta=O and theta=thetamax orientations of the rotational sweep

plane. It requires an axis of rotation, the origin of the rotation,
the extent of the rotation, and the reference point about
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which to base the rotational sweep. */

lnt i;

float dot;

float mag;

float mat[3][3];

float diff[3];

float temp;
float cm,sm;

I* loop index * I

/* dot product */

/* vector magnitude */

I* non-inverted coord, mtx* I

l* difference vector * I

/* temporary storage * I

/* cosine and sine of thetamax * I

I* set-up the z-axis, compute the difference vector and ref dot product * ]

mag = 0.0;

for (i = O; i < 3; i++)

mag += rot[i]*rot[i];

mag = (float)sqrt((double)mag);

dot = 0.0;

for (i = O; i < 3; i++) {
mat[2][i] = rot[i] hrtag;

diff[i] = pt[i] - origin[i];

dot += diffli]*mat[2][i];

]* compute the reference x-axis using a normalization procedure */

mag = 0.0;

for (i = O; i < 3; i++) {

mat[O][i] = diff[i] - dot*mat[2][i];

mag += mat[O][i]*mat[O][i];

}

mag = (fl_t)sqrt((double)mag);
for (i = O; i < 3; i++)

mat[O][i] = mat[O][i] /mag;

/* compute

ma_l][O] =

mat[1][1] =
mat[I][2] =

the reference y-axis by using a cross product */

mat[2][1]*mat[O][2] - mat[2][2l*mat[O][1];

mat[2][2]*mat[O][O] - mat[2][O]*mat[O][2];

mat[2][O]*mat[O][1] - mat[2][1]*mat[O][O];

l* compute the zero reference by inversion */
mat3inv(mat, ret');

I* compute the thetamax reference by rotation * ]
if (thetam > pi) thetam = thetam - pi;

cm = (float)cos((double)thetam);

sm = (float)sin((double)thetam); •

I* assign the reference vectors for clipping * /

refO[O] = 0.0;

refO[1] = 1.0;

refO[21 = 0.0;

refm[O] = -sm;

refm[1] = cm;

refm[2] = 0.0;

} I* routine getrotref * /

void get_norm (innorm. ref, oumorm)
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struct coord3 innorm;
float ref[3][3];

float outnorm[3];

/* original normal * I
/* coord xform mix * I

1" xformed normal * I

l* The routine get_norm transforms a planar normal vector from one

rectangular coordinate system to another. */

{
int i,j; /* loop indices * I

1. perform the 4orm */
for (i = O; i < 3; i++) {

oumorm[i] = 0.0;

for (j = O; j < 3; j++)
outnorm[i] += innorm.pt[j]*ref[j][i];

} 1. for (i = */

} 1. procedure get_norm * /

void _ht(proj, norm, h)

struct trap_rot *proj;
float norrn[3];

float *h;

I* plane information * I

/* plane normal * /
I* height at r=O * I

I* The routine rOht determines the height of a plane at the point

where the cylindrical coordinate r = O.

NOTE: It is mathematically impossible for this routine to be called

when norm[21 (ie nz) is 0.0 */

{
int i; 1. loop index */

1. compute the height using vector calculus */
• h = 0.0;
for (i = O; i < 3; i++)

• h = *h + proj->rpl[i] * norm[i]/norm[2];

} 1. procedure rOht */

void r2p(pt, origin, ref, rp, th)

float pt[3];

float origin[3];

float ref[3][3];

float rp[3];

float *th;

1. original cart pt * /

1. local origin * I
I* coord xfrom r,ax * I

1. xformed cart. pt */
I* cylindrical theta * ]

I* The routine r2p converts a cartesian point from one reference frame

to another and computes the cylindral theta of that point in the new

reference frame. * /

int i,j;
1. transform the point from one frame to the other * /

for (i = O; i < 3; i++) {

rp[i] = 0.0;

for (j = O; j < 3; j++)
rp[i] += (pt[j] - origin[j])*reflj][i];

}

I* loop indices */
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/* compute the cylindrical theta * I
if ((rp[Ol = 0.0) & (rp[l] == 0.0))

• th = 0.0;
else

• th = (float)atan2((double)rp[1], (dooble)rp[O]);

if (*th < 0.0) *th = 2*pi + *th;
} /* routine r2p * /

void rot_prep (pl, p2, origin, ref, proj)

float pl [3];
float p213];
float origin[3];
float retI3][3];

struct trap rot *proj;

/* starting endpoint * I

I* ending endpoint * I

/* local origin */
1" coord, sys. xform * /

/* projected data * I

I* The routine rot._prep converts a line segment in one cartesian

reference frame to another via a local origin and new bcL_is vector
set. The new cartesian coordinates are then projected to an angle

in the cylindrical coordinate frame of the same orientation. * I

float tmp[3];
int i;

I* temp midpoint * I

I* loop index * I

[* convert the endpoints * /

r2p(pl, origin, ref, proj->rpl, &proj->th[O]);

r'2p(p2, origin, ref, proj->rp3, &proj->th[2]);

/* fred and convert the line segments midpoint */
for (i = O; i < 3; i++)

trap[i] = 0.5 * (pl[i] + p2[i]);
r2p(tmp, origin, ref, proj->rp2, &proj->th[1]);

} [* routine rot_prep * /

void get_mpt(,proj, ref, mpt)

struct trap_rot *proj;
float ref[3];

float mpt[3];

/* temporary proj * I
/* reference vector * /

l* cl_vped point * /

[* The routine getmpt clips the projected line segment described by
proj to the angle defined by the vector ref. The resultam point

is returned in rapt. */

float dotl, dot2;
lot i;

float m;

I* dot products * /

I* loop index * I

[* distance along seg. */

l* use vector calculus to perform the clip * /

[* compute the two dot products * /
dotl = dot2 = 0.0;

for (i = O; i < 3; i++) {

dotl += proj->rpl[i] * retli];

dot2 += proj->rp3[i] * re[Ii];
}
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I* fred the segment point on the clip angle */
m = dotl / (dotl - dot2);

for (i = 0; i < 3; i++)

mpt[i] = proj->rpl[i] + m*(proj->rp3[i] - proj->rpl[i]);

} t* routine get_rapt * I

void mtreflect(proj, count)

struct tmp_mt proj[MAX_VERTS_FACE];
Int count;

{
int i,j;

I* reflect all thetas through the origin * I
for ( i = O; i < count; i++)

for (j : 0; j < 3; j++)

if (projtil.thlj] < pi)

proj[i].th[j] +=- pi;
else

proj[i].th[j] += -pi;

} I* routine rot_reflect */

I* points to reflect * I
I* number of points * I

I* loop indices * I

void full_rot(proj, ref, rot_plane, count)

struet trap_rot *proj;
float retI3];

struct rotseg rot_plane[4*TOT_VERTS];
int *count;

/* segment to proj * I
/* clip reference * I

I* clipped points * I

/* no of points *1

/* The routine full_rot performs the projection and clipping necessary
for a rotation of exactly pi radians. */

float mpt[3];
int i;

I* clipped point */
I* loop index */

1" check for segment in first two quadrants only */
If ((proj->th[O] <= pi) & (proj->th[2] <= pi)) {

for (i = O; i < 3; i-H-) {

rot_planet *count].pt[i] = proj->rpl [i];
mt_plane[*count].del[i] = proj->rp3[i] - proj->rpl[i];

}
rot_plane[*count].sign = 1.0;
• count = *count + l;

else 1" check for segment in third and fourth quadrants only */
if((proj->th[0] > pi) & (proj->th[2] > pi)) {

for (i = 0; i < 3; i++) {

rot_plane[*count].pt[i] = proj->rpl[i];

rot_plane[*count].del[i] = proj->rp3[i] - proj->rpl[i];

}
rot_plane[*count].sign = 1.0;
• count = *count + 1;

}
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else { 1" segment must be clipped at theta = 04_i */

get_mpt(proj, ref, rapt);

/* save the clipped data * /
for (i = O; i < 3; i++) {

rot_plane[*count].pt[i] = proj->rpl [i];

rot plane[*count].del[i] = rapt[i] - proj-->rpl[i];

rot_plane[ *count+l ].pt[i] = mpt[i];

rot_plane[*count+l].del[i] = proj->rp3[i] - rapt[i];
}

I* determine which half has the positive r values * /

If (proj->th[O] <= pi) { /* first endpoint in quads 1 & 2 * I

rot_plane[* count].sign = 1.0;

rot_plane[*count+l].sign =-1.0;
)

else {

ro t...plane[* count].sign = -1.0;

rot_plane[*count+l].sign = 1.0;
)

*count = *count + 2;

} I* else seg must be clipped * I

) [* routine full._rot * /

int rot_clip(proj, sign, refO, refm, thetamax, hO, rot..plane, count)

struct tmp_rot *proj;

float sign;
float refO[3];
float refm[3];
float thetamax;
float h0;

struet rot_seg rot_plane[4*TOT_VERTS];
lnt *count;

I* segment to clip */
1" sign of r */

/* 0 clip vector "1
I* max clip vector */
I* maximum theta * I

1" height @ r=O * /

/* clipped segments * I
I* no of clipped segs * I

I* The routine rotclip performs the rotational clipping of an input

segment. Due to the complications caused by rotational wrap

around and reflection through the origin, various return codes are
used to denote the type of clip which took place. * I

float mpt[3];

int i;

int rtn_code;

I* clipped point * I

/* loop index * I
I* return code */

#define thetal proj->th[0]
#define theta2 proj->th[1]

#define theta3 proj->th[2]

I* save the sign * I

rot_.plane[*count].sign = sign;

1" Check for segment location relative to the theta wedge */

if (thetal <= thetamax) {

If (theta3 <= thetamax) {

1" Segment all inclusive and not clipped */
for (i = O; i < 3; i++) {

rot_plane[*counq.pt[il = proj->rpl[i];

rot_plane[*count].del[il = proj-->rp3[i] - proj->rpl[i];
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}
*count = *count + 1;

rm code = 1;

else { /* clip theta3 */

If ((theta2> theta3) I (theta2 < thetal)){

/* clip theta.3to zero * /

get._mpt(proj,refO, rapt);
rm code = 16;

}
else{

]* clip theta3 to thetamax * /

getmpt(proj, refrn,rapt);
rm code = 24;

}

I* Store the clipped segment */
for (i = O; i < 3; i++) {

rot_plane[*count].pt[i] = proj->rpl [i];

rot_plane[*count].del[i] = mpt[i] - proj->rpl[i];

}
• count = *count + 1;

/* else clip theta3 * I

} I* if thetal <= thetamax * /

else { l* clip thetal * /
if (theta3 <= thetamax) {

If ((theta2> thetal) I (theta2< theta3))[

/* clip thetal to zero */

getmpt(proj, refO, rapt);
rtn code = 4;

n

}
else {

I* clip thetal to thetamax */

getmpt(proj, refm, rapt);
rm code = 6;

}

I* Save the clipped information * /
for (i = O; i < 3; i++) {

rot_plane[*count].pt[i] = mpt[i];

rot._plane[*count].del[i] = proj->rp3[i] - mpt[i];

}
• count = *count + 1;

l* g theta3 > thetamax * I

else { I* clip both thetal and theta3 * I

if ((thetal < theta3) & ((theta2 < thetal) I (theta2 > theta3))) {

/* clip thetal to thetamax, theta3 to zero */

getmpt(proj, refm, mpt);
for (i = O; i < 3; i++)

rot_plane[*count].pt[i] = mpt[i];

getmpt(proj, refO, rapt);
for (i = O; i < 3; i++)

rot_plane[*count].del[i] = mpt[i] - rot_plane[*count].pt[i];

*count = *count + 1;

rm code = 22;
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} I* if thetal < theta3 etc */

else I* segment is not swept * I

rm code = O;

if ((theta3 < thetal) & ((theta2 < theta3) I (theta2 > thetal))) [

1" clip thetal to zero, theta3 to thetamax * I

getmpt(proj, refO, rapt);
for (i = O; i < 3; i++)

rot_plane[*count].pt[i] = mpt[i];

getmpt(proj, refm, mpt);
for (i = O; i < 3; i++)

rot_plane[*count].del[i] = mpt[i] - rot__plane[*count].pt[i];

*count = *cottllt + 1;

rm code = 28;

/i-if theta3 < thetal etc */

et_ {
/* segment is not swept * /

rtn code = O;

}
]* else clip both * [

} I* else clip thetal */

return(rtn_code);

} I* routine rot_clip * [
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/*

** NOTICE OF COPYRIGHT

** Copyright (C) Rensselaer Polytechnic Institute.
** 1990 ALL RIGHTS RESERVED.

** Permission to use, distribute, and copy is granted ONLY

** for research purposes, provided that this notice is

** displayed and the author is acknowledged.

** This software is provided in the hope that it will be

** useful. BUT, in no event will the authors or Rensselaer

** be liable for any damages whatsoever, including any lost

** profits, lost monies, business interruption, or other

** special, incidental or consequential damages arising out

** of the use or inability to use (including but not
** limited to loss of data or data being rendered

** inaccurate or losses sustained by third parties or a

** failure of this software to operate) even if the user
** has been advised of the possibility of such damages, or

** for any claim by any other party.

** This software was developed at the facilities of the

** Center for Intelligent Robotic Systems for Space

** Exploration, Troy, New York, thanks to generous project

** funding by NASA.

** Package: Gripper Envelope Detection Using Sweep Shadows

** Written By: Henry L. Welch

*1
************************************************************************

* rotate.c -- This module contains the higher level routines which *

* perform the 2-D plane sweep. Most of the support
* routines used are contained in the module envel.c

* Written by: Henry L. Welch November, 1989

*********************************************************************** /

#Include <stdio.h>

#Include <math.h>
#include "envel.h"

#Include "const.h"

#Include "data.h"

void rsweep(proj, num, hO, refO, refm, thetamax, sign, rotplane, count)

struct trap_rot proj[MAX_VERTS_FACE];
int num;
float h0;
float ref0[3];
float refm[3];
float thetamax;

float sign;
struct rot_seg rot__plane[4*TOT_VERTS];
int *count;

/* rect. proj. of face */
/* number of verts */

/* heigt @ r=O * I

/* theta 0 ref. vector * I

I* thetamax ref vector * I
/* max theta of rotation */

1" sign of the radii */
1" clipped segments * I

1" number of segments * I

I* The routine rsweep performs the sweeping of a planar face through a

rotational wedge in cylindrical coordinate system. */
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int start;

Int first;
Int ccode;

Int scode;
Int pcode;
Int incase;

Int i,j;
float last[3];

I* flag for no segs yet * I

/* Pointer into rotplane * I

I* Current clip code * I
I* First seg. clip code * I

I* Previous clip code * I

I* Temporary pointer * I

I* Loop indices * I

/* Last included point */

[* initialize pointers and flags, then loop on all edges */
start = TRUE;
first = *count;

for (i = O; i < hum; i++) {

1" clip the edge */
incase = *count;

ccode = rotelip(&proj[i], sign, ref0, refm, thetamax, h0, rot.plane,
count);

I* determine the type of clip * /

If (ccode [= O) { /* edge has a segment * /

if (start == TRUE) { /* Process first edge with a segment */
start = FALSE;

/* Save relevant data of clip code */
If ((ccode == 1) I (ccode == 16) I (ccode == 24))

scode = 0;

else if ((ccode -- 4) I (ccode == 28))

scode = 1 ;

else scode = 2;

} /* g start = True *]
else {

I* check for type of clipping */

If ((ccode == 4) I (ccode == 28)) { I* Entering at theta = 0 *1

If ((pcode == 16) I (pcode == 22)) { /* left at theta = 0 *1

I* close along theta = 0 */
for (j = 0; j < 3; j++) {

rot_plane [*count].pt[j ] = last[j];

rot_plane[*count].del[j] = rot_plane[*count - l].pt[j] -
last[j];

}
rot_plane[*count].sign = sign;
• count = *count + 1;

}
else { /* left at theta = thetamax */

I* close via r = 0 "1

for (j = O; j < 2; j-H-) {

rot plane[*count].pt[j] = last[j];
rot_plane[*count].del[j] = -last[j];

rot__plane[*count+l].pt[j] = 0.0;
rot_plane[*count+ll.del[j] = rot plane[*count-1].pt[j];

ro t...plane [* coun t].pt[2] = last[2];
rotplane[*count].del[2] = h0 - last[2];

rot_plane[*count+l].pt[2] = hO;

rotplane[*count+l].del[2] = rot_.plane[*count-1].pt[2] - h0;

rot_plane[*count].sign = rot_plane[*count+l].sign = sign;
*count = *count + 2;
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} I* else left at theta = thetamax * /

} I* if coming in at theta = 0 */
else If ((ccode == 6) I (ccode == 22)) {

if ((pcode ==16) 1 (pc,ode == 22)) {

/* Enter @ thetamax */
/* Left at theta = 0 *1

1" close via • = 0 */

for (j = O; j < 2; j++) {
rot__plane[* count].pt[j] = last[j];

rot_plane[*count].del[j] = -last[j];

rot_plane[*count+l ].pt[j] = 0.0;
rot__plane[*count+l ].del[j] = rot_plane[*count-l].pt[j];

rot_plane[*count].pt[2] = last[2];

rot_plane[*count].del[2] = h0 - last[2];

rot_.plane[ *count+l ].pt[2] = h0;
rot__plane[*count+l].del[2l = rot_.plane[*count-1].pt[2] - h0;

rot_plane[*count].sign = rot_.plane[*count+l].sign = sign;
*count = *count + 2;

} I* if left at theta = 0 */

else { /* left at thetamax */

]* close along thetamax

for (j = 0; j < 3; j++)

rot_plane[*count].pt [j]

rot_plane[ *count] .del[j]

*/

{
= last[jl;

= rot.plane[*count- 1].pt[j] -

last[j];

}
rot_plane[*count].sign = sign;
*count = *count + 1;

} l* else left at thetamax * /

} /* Or entered at thetamax * /

} /* else check for type of clip * /
I* Process clip on exit if it exists */

i1' ((ccode == 16) I (ccode == 24) I (ccode == 22) I

(ecode _ 28)) {

pcode = ccode;

for (,j = O; j < 3; j++) I* save last valid point *l

last[j] = rotplane[incase].pt[j] +
rotplane[ incase] .del[j];

I* or clip on exit */

} I* ifccode <> 0 */

} /*for i = 0 *1

if (start = FALSE) { /* close clip from beginning * /

if (((scode = 1) & ((pcode = 16) I (pcode == 22))) I

((scode == 2) & ((fxzode == 24) I (pcode == 28)))) {

I* clip on one side only */
for (j = 0; j < 3; j++) {

rot_.plane[*count].pt[j] = last[j];

rot_plane[*count].del[j] = rot_plane[first].pt[j] -
last[j];

}
rot.plane[*count].sign = sign;
• count = *count + 1;
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} I* if clip on one side "1

else if (((scode --= 1) & ((pcode == 24) I (pcode == 28))) I
((scode == 2) & ((pcode == 16) I (pcode -- 22)))) {

l* close via r = 0 * I

for (j = 0; j < 2; j++) {

rot_plane[*count].pt[j] = last[j];

rot_plane[*count].del[j] = -last[j];

rot._plane[*count+l ].pt[j] = 0.0;

rot_plane[*count+l].del[j] = roLplane[f'trst].pt[j];

}
rot_plane[*count].pt[2] = last[2];

rot__plane[*count].del[2] = h0 - last[2];

rot_plane[ *count+l ].pt[2] = h0;

rot_plane[*count+l].del[2] = rot_plane[first].pt[2] - h0;

rot_plane[*count].sign = rot__plane[*count+l].sign = sign;
*count = *count + 2;

I* close via r = 0 */

} I* if start = false */
} I* routine rsweep * I

void do_rsweep (verts, num_objects, f__count, v count, norms,

origin, ref, ref0, refm, tffetarnax, rot_plane, count)

struct coord3 verts[MAX_OBJECTS][MAX_FACES][MAX_VERTS_FACE];
int nurn_objects;
int f_count[MAX_OBJECTS];
int v_count[MAX_OBJECTS] [MAX_FACES];
struct coord3 norms[MAX_OBJECTS][MAX_FACES];
float origin[3];
float ref[3][3];
float ref0[3];
float refm[3];
float thetamax;

struct roLseg rot__plane[4*TOT_VERTS];
int *count;

]* obj verts */
/* number of objects * I

1" face count * /

I* vert count per face * I

/* normals for faces * /

[* rotation origin * /
I* inverted basis * ]

/* theta 0 ref vector * /

/* thetamax ref vector * /
I* maximum theta */

I* rotational sweep * I

/* segments in sweep * [

I* The routine do_rsweep performs a rotational sweep on the environment. * /

lnt Lj,k,l;
int vc;

float pl[3].p213];
float tmax;

float norm[3];
float h0;

struct trap_rot proj[MAX_VERTS_FACE];

/* /oop ind/ces * /

l* vertex count * /

I* segment endpoints * /

I* actual thetamax */
I* face normal * I

1" height @ r=O "1
l* temp. data * I

1" initialize the count and loop on each object * /
• count = 0;

for (i = 0; i < hum objects; i++) {

l* loop on each face */

for (j = 0; j < f count[i]; j++) {
vc = v_count[il[j];
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I* loop on each edge/vertex * /

for (k = O; k < (vc - 1); k++) {

l* copy over edge endpoims * I

for (1 = O; 1 < 3; 1++) [

pl [1] = verts[i][j][kl.pt[l];

p2[1] = verts[i][j][k+l].pt[1];
}

/* prepare the edge * [

rot_prep(pl, p2, origin, ref, &proj[k]);
} ]* for k = O *]

/* close the face * I
for (1 = 0;, 1 < 3; !++) {

pl[l] = verts[i][j][vc - 1].pt[l];

p2[1] = verts[i][j][O].pt[1];
}

rot_prep(p1, p2, origin, ref, &proj[vc-1]);

/* sweep the plane rotationally */

get._norm(norms[i][j], ref, norm);
rOht(&proj[O], norm, &hO);

[* process the minimal radius shadow line * /

do_minr(proj, vc, norm, hO, refO, refm, thetamax, rotplane, count);

]* Sweep the face * ]
tmax = thetamax;

if (thetamax > pi) { /* Must sweep in two sections */
rsweep(proj, vc, hO, refO, refO, pi, 1.0, rotplane, eounO;

rotreflect(proj, re);

rsweep(proj, vc, hO, refO, reiD, pi, -1.0, rot_plane, count);
tmax = thetamax - pi;

}
rsweep(proj, vc, hO, refO, refm, tmax, 1.0, rot_plane, count);

rotreflect(proj, ve);

rsweep(proj, vc, hO, refO, refm, tmax, -1.0, rot plane, cotmt);

} /*forj = 0"/
} 1" for i = 0 * ]

I* do_rsweep */

void analyzerot_plane(rotplane, count, site, distance)

struet rot_seg rot__plane[4*TOT_VERTS];
int count;

float site[2];
float *distance;

/* rotational sweep results */

/* number of segments */
l* grasp site coords * ]

I* distance to nearest point * /

/* The routine analyze_rot..plane finds the nearest linear distance from the

grasp site to the sweep segments. It is done by approximating the (r,h)
curves by ten straight line segments. */

int i,j,k;
float pt[3];

float del[3];

/* loop indices * I

/* current segmem point */

/* segment coord steps */
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float r;
float temp[2];
float dist;
struct seg line;

I* radius of point * I

/* temporary storage * /
/* intermediate distance * /

/* convenient data structure */

]* initialize the distance to a ridiculous value and loop on all segments * /

• distance = 1000000000.0;

for (i = O; i < count; i++) {

[* copy over the segment information * /

for (j = O; j < 3; j++) {

pt[j] = rot_plane[i].pt[j];
dell.j] = 0.1 * rot_plane[i].del[j];

}

I* Break the curve into 10 straight line segments * /

line.p2[O] = (float)sqrt((double)(pt[O]*pt[O] + pt[ll*pt[1])) *

rot_plane[i] .sign;
line.p2[1] = pt[2];

for (j = O; j < 10; j++) {

[* set-up the beginning point * I

line.pl[O] = line.p2[O];

line.pill] = line.p2[1];

/* move ahead the delta * /

for (k = O; k < 3; k++)

pt[k] += del[k];

/* set-up the ending point * /

line.p2[O] = (fioat)sqrt((double)(pt[O]*pt[O] + pt[1]*pt[1])) *
rot_plane[i] .sign;

line.p2[1] = pt[2];

/* check the distance and update accordingly */
d_pt2seg(site, line, &dist, temp);

if (dist < *distance) *distance = dist;

} I* for j = */
/* for i = */

*distance = (float)sqrt((double)*distance);

} /* analyze_rot_plane * /

Aug 22 14:13 1990 Page 6 of rotate.c



sweep.c Plane Sweep Software Listing sweep.c _

/,
** NOTICE OF COPYRIGHT

** Copyright (C) Rensselaer Polytechnic Institute.
** 1990 ALL RIGHTS RESERVED.

** Permission to use, distribute, and copy is granted ONLY

** for research purposes, provided that this notice is

** displayed and the author is acknowledged.

** This software is provided in the hope that it will be

** useful. BUT, in no event will the authors or Rensselaer

** be liable for any damages whatsoever, including any lost

** profits, lost monies, business interruption, or other

** special, incidental or consequential damages arising out

** of the use or inability to use (including but not
** limited to loss of data or data being rendered

** inaccurate or losses sustained by third parties or a

** failure of this software to operate) even if the user
** has been advised of the possibility of such damages, or

** for any claim by any other party.

** This software was developed at the facilities of the

** Center for Intelligent Robotic Systems for Space

** Exploration, Troy, New York, thanks to generous project

** funding by NASA.

** Package: Gripper Envelope Detection Using Sweep Shadows

** Written By: Henry L. Welch

*1

* sweep.c -- This module contains the higher level routines which *

* perform the 2-D plane sweep. Most of the support
* routines used are contained in the module envel.c *

* Written by: Henry L. Welch June&July, 1989

********************************************************************** ]

#include <stdio.h>
#include <math.h>
#Include "envel.h"

#1ndude "const.h"

#Include "data.h"

void do_tsweep (origin, basis, length,

num_objects, f_count, v_count, verts,

plane, count)
float origin[3];
float basis[3][3];
float length;

lnt hum_objects;
lnt f_count[MAX_OBJECTS];

lnt v_count[MAX_OB JECTS][MAX_FACES];
struct coord3 verts[MAX_OBJECTS][MAX_FACES]

[MAX_VERTS FACE];

1" Defn of traj. sweep * /
/* Inverted basis * I

I* Defn of environment * I

/* Face count/object */
/* Vertex count fface * /

/* Extracted vertices */
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struet seg plane[2*TOT_VERTS];

int *count;

I* Swept plane * I
I* Number of segments * I

I* The routine do_tsweep performs a trajectory sweep of the trajectory

specified by origin, basis, and length. The objects swept are those

dej'med using hUm_objects ... verts. The resulting swept segments
are contained in the structure plane. * /

int i,j&,l;
int start;

int first;

int swept;
lnt temp;

float pl[3],p213];

/* loop indices * I

/* New face flag * /

/* First segment on face * I

I* Condition flag * I

I* Temporary index * I

I* Segment endpoints * I

1" start at the beginning and loop on all objects */
• count = 0;

for (i = 0; i < hum_objects; i++) {

1" loop for each face * /

for (j = 0; j < f_count[i]; j++) {
start = 1;

first = *count;

[* loop for each vertex pair * /

for 0c = 0; k < (v_count[i][j] - 1); k++) {
I* Copy over edge endpoints */

for (1 = O; ! < 3; 1++) {

pl[l] = verts[i][j][k].pt[l];
p2[1] = verts[i][j][k+l].pt[l];

}

I* Sweep the edge * I

swept = sweepseg(origin, basis, length, pl, p2, &plane[*count]);

if (swept -- 1) { I* The edge was swept * I
If (start == 1) start = 0; /* Face is in plane *1

else { /* Check for continuity * I

if ((plane[*count-1].p2[0] != plane[*count].pl[0]) I
(plane[*count-1].p2[1] [= plane[*count].pl[ll)) {

}
*count = *count + 1;

} 1" if (swept * /

/*for (k */

/* Connect the segments over the clipped vertex */
• count = *count + 1;

plane[*count].pl[0] = plane[*count-2].p2[0];

plane[*count].pl[1] = plane[*count-2].p2[1];

plane[*count].p2[0] = plane[*count-1].pl[0];

plane[*count].p2[ll = plane[*count-1].pl[1];

} I* if ((plane * I
I* else */

/* count the added segment */

If (start == 0) { I* try closing edge * I

I* copy over first and last vertices * /

for (1 = 0; 1 < 3; 1++) {

pl[l]= verts[i][j][v_count[i][j]-ll.pt[1];

p2[l] = verts[i][j][0l.pt[l];

I
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/* Sweep the edge * I

swept = sweepseg(origin, basis, length, pl, p2, &plane[*count]);

if (swept _ 1) { /* The edge was swept *1
temp = *count; /* This may be needed */
if ((plane[*count-1].p2[O] [= plane[*count].pl[O]) I

(plane[*count-1].p2[1] != plane[*count].pl[1])) {

/* Connect the segments over the clipped vertex */
• count = *count + 1;

plane[*cotmt].pl[O] = plane[*count-2].p2[O];

plane[*count].pl[ll = plane[*count-2].p2[1];

plane[*count].p2[O] = plane[*count-1].pl[O];

plane[*count].p2[1] = plane[*count-1].pl[l];

I* if ((plane * I

I* Check the other end * I

if ((plane[first].pl[O] != plane[temp].p2[O]) I

(plane[first].pl[1] != plane[temp].p2[l])) {

/* Connect the segments over the clipped vertex */
• count = *count + 1;

plane[*count].pl[O] = plane[temp].p2[O];

plane[*count].pl[1] = plane[temp].p2[1];

plane[*count].p2[O] = plane[first].pl[O];
plane[*count].p2[l] = plane[first].pl[1];

} I* if ((ptane */
•count = *count + I; /* count the added segment */

} 1" if (swept * /

} /* g (start * I
} /*for_j*/

} /* for (i * I

} /* routine do_tsweep */

void extract verts (num_objects, objs, object, xfm verts,
- f_count' v_count' verbs)

int num_objects;
int objs[MAX_OBJECTS];
stru©t n_object object[MAX_OBJECTS];
struct coord3 xfra_verts[MAX_OBJECTS][MAX_VERTS];

int f_count[MAX_OBJECTS];
int v_count[MAX OBJECTS] [MAX_FACES];

struet coord3 verts[MAX_OBJECTS][MAX_FACES][MAX_VERTS_FACE];

I* number of objects * I

I* Objects in use * I

/* Object data * I
I* Transformed verts * I

I* Face count/object * I

I* Vertex count/face * I

1" The routine extract verts aligns the transformed object vertices

into a more usefuF format. * /

int Lj,LI;

int currentobj;

/* Loop indices * 1

I* Object in use *1

1" Loop on the objects */
for (i = O; i < num_objects; i++) {

cm'rentobj = objs[i];

I* Loop on all faces * I

f..count[i] = object[current_obj].num_faces;
for (j = O; j < f_count[i]; j++) {

I* Loop on all vertices * I

v_count[i][j] = object[current_obj].vert_count[j];

for (k = O; k < v_count[i][j]; k++)
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[* copy over the vertex coordinates * /
for (1 = 0; 1 < 3; 1++)

verts[i][j][k].pt[1] = xfm_verts[currentobj]
[object[current_obj].vert_list[j][kl].pt[1];

} /* for (j */

[*for(i*�

] /* routine extractverts * /

void xfm_objects(num_objects, objs, object,xfm_verts, xfrn_norms)

int num_objects; I* Number of objects * /

int objs[MAX_OBJECTS]; [* Objects in use */

struct n_object object[MAX_OBJECTS]; I* The objects * I

struet coord3 xfm_verts[MAX_OBJECTS][MAX_VERTS]; /* Transformed vertices * I

struct coord3 xfi,n_norms[MAX_OBJECTS][MAX_FACES]; /* Transformed formals * /

[* The routine xfm_objects scales, rotates, and translates the objects

in the environment to the appropriate location in the assembly * I

int i,j,k;
lnt currentobj;

float sc_mat[4][4];

float ph_mat[4][4];

float th_mat[4][4];
float tr mat[4][4];

float t._-matl[4][4], tmat2[4][4], xfm_mat[4][4];
struct t coord4 onorm;

I* Loop indices */
I* Object being xformed * I

/* Scaling matrix */
/* Phi rotation matrix */

1" Theta rot. matrix * /

[* Translation matrix * I

/* Combined matrices * 1

[* Temp storage * /

[* Loop on the objects * /

for (i = 0; i < num_objects; i++) {

eurrentobj = objs[i];

[* Prepare transformation matrices */
for (j = 0; j < 4; j-H-) {

for (k = 0; k < 4; k++) [

sc_mat[j][k] = 0.0;

ph_mat[j][k] = 0.0;

th_mat[j][k] = 0.0;
tr_mat[j][k] = 0.0;

}
sc_mat[j][j] = 1.0;
ph_mat[j][j] = 1.0;

th mat[j][j] = 1.0;

tr_mat[j][j] = 1.0;

} [*for(j*�

for (j = 0; j < 3; j++) {

sc_mat[j][j] = object[current_obj].scale;

tr_mat[3][jl = object[current_obj].xlate[j];
]

th_mat[l][1]
th_mat[l][2]

th_mat[2][l]

th_mat[2][2]

= (float)cos((double)object[current_obj].theta);
= (float)sin((double)object[current_obj].theta);

= -th_mat[1][2];

= th_mat[1][1];

ph._ma_O][O]

ph_.mat[O][l]
ph._ma_l][l]

ph_mat[l][O]

= (float)cos((double)object[current_obj].phi);
= (float)sin((double)object[currentobj].phi);
= ph_mat[O] [0];
= -ph_mat[O] [1 ];
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]* Combine the matrices */

mat4mul(se mat, ph_mat, tmatl);
mat4mul(th_mat, w_mat, t mat2);

mat4mul(tmatl, treat2, xfm_mat);

/* Transform the vertices for this object */

for (,j = 0; j < object[currentobjl.num_verts; j++)
do xfrn (xfm mat, object[current obj].vertices[j],

- &xfm_verts[i][j]);

I* Transfrom the face normals for this object */
mat4mul(ph_mat, th mat, xfm mat);
for (j = O; j < o_ect[curren__obj].nttm_faces; j++) {

/* Prepare the appropriate data type * I

onorm.x = object[current_objl.normals[j].x;

onorm.y = object[current_obj].normals[j].y;

onorm.z = object[current_obj].normals[j].z;
onorm.w = 1.0;

/* Transform the normal * I

do_xfrn(xfirt_mat, onorm, &xfm_norms[i][j]);

} /* for (i */

} I* routine xfm_objects * I

void analyze_.plane (plane, count, type, site, normal, distance)

struet seg plane [2*TOT_VERTS]; I* sweep plane * I
int count;

int type;
float site[2];
float normal[2];
float *distance;

/* segments in the plane * /

/* type of area to consider * ]

/* location of grasp site * /

/* half-plane normal */
/* heuristic distance returned * /

/* The routine analyze._plane, scans a sweep plane of segments to determine the

square of the distance to the nearest obstruction. Whether the entire

plane or only half is considered depends on the flag type. * I

struet seg oplane[2*TOT_VERTS];
int ocount;

float dist;

int i;

float pt[2];

]* halved plane * /

/* number of segments */
/* temporary distance */

/* a loop index * l

/* nearest point on segment * [

l* determine if only half the plane need be considered * /

If (type _ 1) I* halve the plane * I

half_plane(plane, count, site, normal, oplane, ocount);
else

ocount = ¢oullt,

/* find the distance to the first point */

if (type == 1)

d_..pt2seg(site, oplane[0], &dist, pt);
else

d_pt2seg(site, plane[O], &disk pt);

*_stance = d_t;
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/* process the remaining points */

for (i = 1; i < ocount; i++) {

if (type _ I)

d_.pt2seg(site, oplane[i], &dist, pt);
else

d._pt2seg(site, plane[i], &dist, pt);

if (dist < *distance) *distance = dist;

!

I* take the square root of the result */

• distance = (float)sqrt((double)*distance);

} 1" routine analyze..plane * /

I* *(splane + 3) * I
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]*

** NOTICE OF COPYRIGHT

** Copyright (C) Rensselaer Polytechnic Institute.
** 1990 ALL RIGHTS RESERVED.

** Permission to use, distribute, and copy is granted ONLY

** for research purposes, provided that this notice is

** displayed and the author is acknowledged.

** This software is provided in the hope that it will be

** useful. BUT, in no event will the authors or Rensselaer

** be liable for any damages whatsoever, including any lost

** profits, lost monies, business interruption, or other

** special, incidental or consequential damages arising out

** of the use or inability to use (including but not

** limited to loss of data or data being rendered
** inaccurate or losses sustained by third parties or a

** failure of this software to operate) even if the user
** has been advised of the possibility of such damages, or

** for any claim by any other party.

** This software was developed at the facilities of the

** Center for Intelligent Robotic Systems for Space

** Exploration, Troy, New York, thanks to generous project

** funding by NASA.

** Package: Gripper Envelope Detection Using Sweep Shadows

** Written By: Henry L. Welch

*1
*******************************************************************

* sweepio.c -- This module contains the input/output support *
* routines for the 2-D plane sweep used in the

* gr_oper envelope problem.

* Written by: HLW August, 1989
******************************************************************* /

#include <stdio.h>
#include <math.h>
#include "envel.h"
#include "consth"

#include "data.h"

void printmat(mat)
float mat[3][3]; /* The matrix to print * I

/* The routine printmat prints out a 3x3 matrix to the terminal screen */

{
int i_j; 1" Loop indices * I

for (i = O; i < 3; i++) {
for (j = O; j < 3: j++)

print f ("%f ",mat[i][j]);

primf ("Xn");
}

I* End routine printmat * /

void dump_plane(plane, count, traj)
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struct seg plane[2*TOT_VERTS];
int count;

lnt traj;

1" Plane to print * I

/* Number of segments * 1

/* Trajectory number */

I* The routine dump_plane sends a graph/sunplot compatible version

of the swept plane data to the file "dump"+traj * I

int i; /* Loop index */

FILE *f; /* File pointer */
char *hum[61; I* file number * I

I* identify the trajectory number * /
sprinff(num, "dump%d", traj);

f = fopen(num. "w"); /* Open the file */

for (i = 0; i < count; i ++)

fprintf(f, "%f %f %f %f V' V' _", plane[i].pl[0], plane[i].pl[1],

plane[i].p2[0], plane[i].p2[ 1]);

fclose(f);

} /* routine dump_plane */

vold read..plane(plane, count)

struct seg plane[2*TOT_VERTS];
Int *count;

/* Plane to print * I

/* Number of segments * /

/* The routine dump..plane sends a graph ]sunplot compatible version

of the swept plane data to the file "dump" * /

char i[50]; /* Junk swing * I
FILE *f; /* File pointer */

f= _pen("d_p","r"); i* Open the file * [

*count = 0;

while ([feof(f)) {

fscanf(f, "%f%f%f%f%s%s", &plane[*count].pl [01, &plane[*count].pl [1],

&plane[*count].p2[0], &plane[*count].p2[ 1],
i, i);

*count = *count + 1;

}

fclose(f);

} /* routine read..plane * /

void read_CAD (num_objects, objeck objs)

int *num_objects; /* number of objects */
struct nobject object[MAX_OBJECTS]; 1. objects */

int objs[MAX_OBJECTS]; /* objects in use * I

/* The routine readCAD inputs the CAD data to be used by the sweep
algorithm. * I

{
char infil[80]; 1. CAD file name * /
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FILE *inptr;

int i,j,k;

float *pn;

1" file pointer */
/* loop indices * I

/* a usefM pointer */

1" read in object */
inptr = O;

whine (inpff = O) {
printf("Enter the name of the CAD data file: ");
scanfC%s", infil);

if ((inptr = fopen(infil, "r")) _ O)

prinff("error opening input fileXn");
}

/* read number of objects * /

fscanf(inptr, "_d", num objects);

/* for each object * I

for (i = O; i < *hum_objects; i-H-) {

I* read number of polygons and faces */

fscanf(inptr, "%d %d", &object[i].num_verts, &object[il.num_faces);

/* read in the theta, phi, and scale factors for the object */

fscanf(inptr, "%f %f %f", &object[i].theta, &object[i].phi,
&objectIi].scale);

1" read in the translational position of the object */
fscanf(inptr, "%f %f %f", &object[i].xlate[0], &object[i].xlate[1],

&object[i].xlate[2]);

[* read in the coordinates for each face * /

for (j--0; j<object[i].num verts; j++) {

fscanf(inptr, "%f %f %f", &object[i].vertices[j].x,
&object[i].vertices[j].y, &object[i].ver tices[j].z);

object[i].vertices[j].w = 1.0;

}

I* read in the vertex list and normals for each face */

for (j---O; j<object[i].num_faces; j++) {
fscanf(inptr, "%d", &object[i].vert_count[j]);

for (k=0; k<object[il.vert_count[j]; k++)

fscanf(inptr, "%d", &object[i].vert_list[j][k]);

fscanf(inptr, "%f %f %f", &object[i].normals[j].x,

&object[i].normals[j].y, &obj ect[i].normals[jl.z);

}
/* Make all objects in use * I

objs[i/ = i;

} I* for (i */
fclose(int'tl);

/* routine read CAD */

void dump_rot_plane(rotplane, count, traj)

struct rotseg rot_plane[4*TOT_VERTS];

int count;
int traj;

/* rotational sweep result */

/* number of segments * I

/* trajectory number * ]

I* The routine dump_rot..plane creates a sunplot readable file for displaying

the results of the current rotational sweep. * I

Aug 22 14:15 1990 Page 3 of sweepio.c



_ sweepio.c Plane Sweep Software Listing sweepio.c

int Lj,k;

FILE *f;
char *num[6];
float pt[3];
float del[3];
float r;

/* loop indices */
I* j_le pointer */

/* file name * I

/* current point */
/* segment step values * [

/* computed radius */

I* identify and open the output file * [
sprinff(num, "dump%d", traj);

f = fopen(num, "w");

/* for each rotational segment * /

for (i = O; i < count; i++) {

/* extract the segment data * [

for (j = O; j < 3; j++) {
pt[j] = rot_plane[i].pt[j];

del[j] = 0.1 * rot_plane[i].del[j];
}

/* break the curve into 10 straight line segments */

for (j = O; j < 10; j++) {

r = (float)sqrt((double)(pt[O]*pt[O] + pt[1]*pt[1])) *
rot_plane[i].sign;

fprinff(f, "%f %f _", r, pt[2]);

/* update the point information */
for (k = O; k < 3; k++)

pt[k] += del[k];

I* for j */

[* print out the last segment * /

r = (float)sqrt((double)(pt[O]*pt[O] + pt[1]*pt[1])) * rot_.plane[i].sign;
fprinff(f, "%f %f V' V' _", r, pt[2]);
/* for i */

fclose(f);
} /* routine dump_rot_plane * [
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/,
** NOTICE OF COPYRIGHT

** Copyright (C) Rensselaer Polytechrdc Institute.
** 1990 ALL RIGHTS RESERVED.
**

**

** Permission to use, distribute, and copy is granted ONLY

** for research purposes, provided that this notice is

** displayed and the author is acknowledged.

** This software is provided in the hope that it will be
** useful. BUT, in no event will the authors or Rensselaer

** be liable for any damages whatsoever, including any lost

** profits, lost monies, business interruption, or other
** special, incidental or consequential damages arising out

** of the use or inability to use (including but not
** limited to loss of data or data being rendered

** inaccurate or losses sustained by third parties or a

** failure of this software to operate) even if the user

** has been advised of the possibility of such damages, or

** for any claim by any other party.

** This software was developed at the facilities of the
** Center for Intelligent Robotic Systems for Space

** Exploration, Troy, New York, thanks to generous project

** funding by NASA.

** Package: Gripper Envelope Detection Using Sweep Shadows

** Written By: Henry L. Welch

*1
_**********************_******_*****_***_****_***_*_**_*****_***_*******

* test.c -- This is the sample call frame for the plane sweep software. *

* Written by: HLW June 1990

#Include <stdio.h>
#Include "envel.h"

#Include "const.h"
#Include "data.h"

main()
{
float coord[3] [3];
float inv[3][3];
float origin[3];
float axis[3];
float refpt[3];

float refO[3];
float refm[3];
float len;
float distance;
float site[2];
float norm[2];
int ttype;

Int type;

I* sweep coord system */

/* inverted coord system */
1" sweep origin * I

/* rotation axis * I

I* reference point * I

/* theta 0 reference vector * I

/* theta max reference vector */

/* length of the sweep * I

/* heuristic distance in plane */

I* location of grasp in plane * I

I* grasp site normal * I
/* trajectory type * I

I* grasp type * I

main
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lnt
int
FILE
char
struct
lnt
int
int
lnt
struct
struct
struct
Int

struct
struct
Int

num_grasps;
i,j,k;

*inptr;
infil[801;

n object object[MAX_OBJECTS];

num_objects;

objs[MAX_OBJECTSI;
f count[MAX OBJECTS];

I* number of grasp sites * I

/* loop indices * I

I* input file pointer * I

I* input Iilename * I

I* objects to process * I
/* number of objects * I

l* object usage list * I

I* face count per object */

v-_count[MAX--OBJECTS][MAX_FACES]; 1" vertex count per face * 1

coord3 verts[MAX_OBJECTS] [MAX_FACES] [MAX VERTS_FACE];

seg plane[2*TOT_VERTS]; I* swept plane * I

rot._seg rot_plane[4*TOT_VERTS]; /* rotated plane * I
count; /* segments in swept plane * /

coord3 xfm_verts[MAX_OBJECTS][MAX VERTS];

¢oord3 xfm_norms[MAX OBJECTS] [MAX_FACES];
num_traj; I* number of trajectories * 1

I* input the objects * I

read__CAD (&num_objects, object, objs);

I* open the trajectory file * I

inptr = 0;

white (inptr == O) {
printf("Enter the name of the file containing sweep info: ");
scanf("%s", infil);

if ((inptr = fopen(infil. "r")) == 0)

printf("error opening file!Xn");

}

l* read in the objects to be used in this scan * /

fscanf(inptr, "%d", &num_objects);

for (i = 0; i < num_objects; i++)
fscanf(inptr, "%d", &objs[i]);

1" preprocess the objects so they are where they belong * 1

xfm_objects(num objects, objs, object, xfm_verts, xfm_norms);

/* extract the vertices * /

extractverts(num_objects, objs, object, xfm_verts, f...count,

v_counk verts);

I* Find the trajectory sweep information. * /

1" read the number of trajectories */

fscanf (inplr, "%d", &num_traj);

I* for each trajectory */

for (i = 0; i < num_la-aj; i++) {

I* read in the type of sweep O=line l=rotate */

fscarff(inptr, "%d", &ttype);

it (ttyr,e = 0) {

I* read in the reference coordinate system for the trajectory * 1

for (j = 0; j < 3; j++)
fscanf(inptr, "%f", &origin[j]);

for (j = 0, j < 3; j++)
for (k = 0; k < 3; k++)

fscanf (inptr, "%f', &coord[jl[k]);

...main
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1" read in the length of the trajectory */

fscanf(inptr, "%f', &len);

/* invert the coordinate system */
mat3inv(coord, inv);

I* perform the sweep */
do_tsweep(origin, inv, lcn, hum_objects, fcount, v_count, verts,

plane, &count);

/* save the sweep data */

dump._plane(plane, count, i);

1" if (ttype == 0 */

ei_ [ /* process a rotation */

I* read in the origin of the rotation * /

for (j = 0; j < 3; j++)

fscanf(inptr, "%f', &origin[j]);

/* read in the rotation axis */

for (j = 0; j < 3; j++)
fscanf(inptr, "%f', &axis[j]);

/* read in the reference point * I
for (j = 0; j < 3; j++)

fscanf(inptr, "%f", &refpt[j]);

I* read in the angle of rotation in radians * /

fscanf(inptr, "%f', &len);

/* set up the various reference vectors etc */

ge_otref(axis, origin, len, refpt, inv, ref0, refm);

/* handle the rotational sweep * /

do rsweep(verts, num_objects, f_count, v count, xfrn norms,
origin, inv, ref0, refm, le_ rot.plane, &count);

printf(" TOTAL: %dXrt",count);
I* save the data for plotting * /

dump_rot._plane(rot_plane, count, i);

} I* else * I

/* evaluate each grasp site for suitability * I

fscanf(inptr, "%d", &hum_grasps);

for (j =0; j < num_grasps; j++) {

I* Read in each grasp site and process it * /

fscanf(inpt_, "%d %f %f', &type, &site[0], &site[I]);

If (type _--- 1) /* read in the normal */

fscanf(inptr, "%f %f', &norm[0l, &norm[l]);

it (ttype == 0)

analyze_plane(plane, count, type, site, norm, &distance);
el.s_

analyze_rot_plane(rot_plane, count, site. &distance);

prinff (" The distance for segment %d, grasp %d is: %f kn",

i, j, distance);

...main
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} /* end for (j = 0 */

} /* e_for (i = 0 */

fclose(inf'd);
/* end ma/n */

...main
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